代数簇相关论文
代数几何算术化是代数几何历史长河中重要的内容,它有效地将代数几何与代数数论和拓扑联系了起来,促进了算术代数几何的形成与发展......
设M是有末端奇点的n维正规代数簇, L是M上的丰富线丛,(M, L)的数字有效值为τ=u/v(u,v是互素的正整数), σ:M→W是由(M, L)决定的nef值态......
移动目标是全纯曲线Nevanlinna理论中重要的研究问题之一。自从Ru于2009年建立的全纯曲线到代数簇交于一般位置上的超曲面的重要工......
2002年3月末,74届奥斯卡奖出乎意料地把四项大奖颁发给电影《美丽心灵》,其中包括最佳影片、最佳导演、最佳改编剧本这三项最重的......
设k为特征p>0的代数闭域且W(k)是k的Witt向量环.k上的光滑概型X称为W(k)上的强可提升概型,如果X以及X上的所有素除子可以同时提升到W(k)上......
论文共分为五部分,第一部分是绪论,介绍了计算机代数和Gr(?)bner基的有关的基本概念、基本工具及其进展;第二部分阐述的是多项式约化问......
学位
该文目的是研究含有一个简单尖点的复有理曲线上秩为2的奇数次无挠层的模空间,最后我们计算了模空间的拓扑欧拉示性数.在给出了一......
设M是有末端奇点的n维代数簇,L是M上的丰富线丛,φ:M→X是由(M,L)决定的nef-值态射,正有理数τ=u/v是(M,L)的nef-值,这里u和v互素。......
将代数簇分解为不可约的或等维的(非混合的)是经典代数几何研究的主要课题之一,是现代几何设计的一种手段,具有很强的应用前景和理论......
本文主要研究关于周群的著名的Murre猜想和周群的有限维性.首先给出了关于一些特殊积簇的Murre猜想的一些结果.确切地说,证明了:1)如果M......
通过对模糊逻辑命题演算形式系统L*的代数语义--R0 代数的研究,给出了R0代数簇的完整分类,并利用L*系统与幂零极小逻辑 (NML)的等......

