极小化极大完工时间的在线的两台同类机分批排序问题

来源 :曲阜师范大学 | 被引量 : 0次 | 上传用户:liuqin1225
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
排序论(Scheduling)又被称作为时间表论,它在组合最优化理论中占有很是重要的地位.作为该领域中的一门学科,排序论由于其较强的实际操作特性,在管理学、物流学以及计算机学等许多学科领域被广泛应用,引起了国内国外许多学者的强烈的兴趣.  在近代排序问题中,在线类的排序和分批类的排序问题,是新兴起的现代排序的模型.多台加工处理机的在线排序问题则是排序论对于实际的生活生产中情况的重要反映,也是对实际社会经济生产力与生产活动的重要体现.文章主要研究了多台同类机的分批的在线排序问题.  论文共分为四章:  第一章针对于排序问题产生的历史背景,计算的复杂性理论,分批排序的概念,在线排序的相关定义以及其它的基本知识进行了详细的阐述,并且简单介绍了本文的主要结果和创新之处.  第二章探讨了一类多台处理机的在线排序问题.主要考虑了工件满足一致性的,批容量无界的两台同类机的在线分批排序问题,目标为极小化工件的最大完工时间.  对于该问题,我们讨论的是随着到达时间的延后,每一时刻到达的工件集中最大的工件长度会越来越大,并且大于前一到达时刻中到达的工件集中最大的工件长度(用三元素法表示为Q2|ri<r j?Pi≤Pj,B=∞,on-line|Cmax).在本章的设计中,我们假设两台同类机的速度分别是1和s,且s≥1.首先,给出了一个在线算法,证明了这个算法的竞争比不超过s+α,其中α为α2+sα-1=0的正根.当s=1时,该算法的竞争比不超过1.618.  第三章同样探讨了一类多台处理机的在线排序问题.与第二章不同之处是,我们考虑了工件的一般情况,即工件有到达时间的,批容量无界的两台同类机的在线分批排序问题,目标为极小化工件的最大完工时间.用三元素法表示为Q2|ri,B=∞,on-line|Cmax).在本章的设计中,我们沿用第二章中提到的在线算法,并且分析了这个算法的竞争比不超过(s+α)2.  第四章考虑了工件满足一致性的,批容量无界的两台同类机的在线分批排序问题,目标为极小化工件的最大流程.  对于这类问题,我们讨论的是随着到达时间的延后,每一时刻到达的工件集中最大的工件长度会越来越小,并且小于前一到达时刻的到达的工件集中最大的工件长度(用三元素法表示为Q2|ri<rj?pi≥pj,B=∞,on-line|Fmax).在本章的设计中,我们依然沿用第:章中提供的在线算法,并且证明了这个算法的竞争比不超过1+1α.
其他文献
解析函数的边值问题是复变函数论中非常重要的一个分支,它广泛应用于物理学、力学和工程技术中的实际问题,已有丰富和成熟的研究成果.然而,在当今科学技术革命的浪潮中,正问
在文献[1]中路见可教授提出了带根号Riemann边值问题和带根号Hilbert边值问题,并给出当指标满足一定条件下问题的解,本论文以此为基础讨论了在边界曲线发生光滑摄动时,一些带
本论文主要研究Groebner基的相关理论及应用,主要包括两个结果:可解多项式代数中计算Groebner基的signature类算法和应用Groebner基的方法计算零维理想的单变元多项式表示. 
本文研究油藏数值模拟中多孔介质多相渗流问题的间断有限元算法及并行计算程序。   在油气资源开发中,油藏数值模拟发挥着不可替代的作用。油藏数值模拟通过用数值方法求解
对于非可加测度理论的系统研究始于1954年法国数学家Choquet[1]提出容度的概念.随后Sugeno[2]于1974年结合模糊集理论,独立地提出了单调集函数和模糊测度的概念,定义了模糊测度
本文运用Krasnoselskii不动点定理,Krein-Rutman定理和Rabinowitz全局分歧定理,研究了两类带奇异非线性项的二阶微分方程边值问题正解的存在性及多解性.主要工作有:  一.运
Mues在1971年提出著名的Mues猜想:假设f是复平面的亚纯函数,导数非常数,则其导数在复平面上的亏量之和不超过1.最近这一问题由日本数学家Yamanoi利用Ahlfors的覆盖曲面和全纯运
本文讨论有限域上的阿贝尔簇在同源意义上的分类。主要内容为Honda-Tate理论。这个理论最初的想法是从韦依开始的。他证明了有限域上阿贝尔簇的韦依猜想,得到了阿贝尔簇到韦依
自2005年以来,我国债券市场发展迅速,已经发展成亚洲最大的信用债券市场。为了满足市场对于信用风险的管理需求,信用风险缓释工具(CRM)应运而生。目前我国CRM市场处于起步阶段,CR
对给定的有限连通图Γ,Γ的自同构群H和有限群A,一个自然的问题是确定Γ的所有连通正则覆盖,使得A为它的覆盖变换群且H中每个自同构可提升。当A为有限交换群时,本文给出了自同构