算子逼近相关论文
该文通过对算子逼近研究的重要基本问题以及其逼近阶的探讨,引入了标量小波和向量小波的概念,并能过较典型的模式分析应用,对小波......
本文首先总结了复可分无穷维Hilbert空间H上算子逼近的一些结论,涉及以下问题:算子何时可通过任意小的紧扰动变成具有某种特定性质......
追溯函数逼近论的源头,始于1885年德国数学家Weierstrass所建立的关于连续函数可以用多项式逼近的著名定理和1859年前苏联数学家Ch......
作为Bernstein算子逼近的逆结果,Wickeren(1)(1986)利用光滑模ω(f,t)给出了Stechkin-Marchaud型不等式,其中ω(x)=x(1-x),最近Dit......
函数逼近论开始于19世纪,在20世纪得以蓬勃发展,且将其研究目标明确为用简单的可计算函数对一般函数的逼近,进而考虑逼近的程度及......
算子逼近论主要研究线性算子列的收敛性质和收敛速度等有关问题.一些著名的线性算子(如Bernstein算子,Szasz-Mirakyan算子,Gamma算......
本学位论文研究了广义Baskakov算子的加权逼近及余项估计,同时讨论了Stancu-kantorovic算子在Ba空间的逼近。主要内容分三个部分: ......
算子逼近论主要研究线性算子列的收敛性质和收敛速度等有关问题.一些著名的线性算子(如Bernstein算子,Szàsz-Mirakyan算子,Baskakov......
本文主要研究Bernstein型算子的逼近,全文共分为三章. 第一章为引言. 第二章借助加权光滑模ω2φλ(f,t)ω,研究了Szász—Mirakj......
本文主要研究基于离散信息的光滑函数逼近。 全文共分为三章: 第一章为序言。 第二章属于插值逼近.这一章讨论了相对导数......
算子逼近是国内外逼近论界多年来研究的热点问题之一,它主要研究线性算子列的收敛性质和收敛速度等有关问题.众所周知,Bernstein算子......
算子逼近是逼近论的一个重要研究方向,主要讨论算子列的收敛速度.近年来,为改善算子的逼近速度,许多学者对一些著名的线性算子(如Bems......
K理论作为非交换拓扑的基本元素,对算子代数的研究具有深刻的影响,我们可以通过算子的K群来了解算子的结构,还可以用算子换位代数的K......
设L(Cm)表示Cm中非线性Lipschitz算子全体所构成的赋半范算子空间,M表示L(Cm)中不可逆算子所组成的集合.文中证明:对任何非M中的Li......
本文引进非线性Lipschitz算子T的glb-Lipschitz数l(T),并证明:l(T)定量刻画非线性Lipschitz连续算子全体所构成的赋半范算子空间中......
给出了Bernstein-Bezier算子的表达式,讨论了该算子的有界性质及收敛逼近性质,得到两个了逼近的结论。......

