【摘 要】
:
K理论作为非交换拓扑的基本元素,对算子代数的研究具有深刻的影响,我们可以通过算子的K群来了解算子的结构,还可以用算子换位代数的K群来刻画算子的相似性, 设н为复的可分的H
论文部分内容阅读
K理论作为非交换拓扑的基本元素,对算子代数的研究具有深刻的影响,我们可以通过算子的K群来了解算子的结构,还可以用算子换位代数的K群来刻画算子的相似性, 设н为复的可分的Hilbert空间,∫(н)为н上的有界线性算子的全体,本文证明了对于∫(н)中的任何一个算子T,都可以用有限个具有较好性质的强不可约算子的直和来逼近它,这些强不可约算子的换位代数都是本质可交换的,其换位代数的半群同构于N或N(2),Ko群同构于z或Z(2),N表示自然数群,z表示整数加群。
其他文献
在幼儿园体育教学活动当中,体育设施是硬实力,教师的体育教育是软实力.但是,从当前我国幼儿园相关的研究来看,关于体育设施的研究尤其是园内设施和园外设施研究比较少.在本文
随着社会的进步和发展,人才在国家之间的竞争中越来越关键,因此,作为祖国将来的栋梁之才—儿童的身心发展是否全面和谐事关重大.科学、合适的体育运动不但能让儿童收获身体健
概率论对研究关于经济、金融、工程等一系列问题提供统的了较为系研究框架。Borel-cantelli引理又是概率论中一个非常重要的引理,在证明概率论中一些重要的定理时起到重要的作
请下载后查看,本文暂不支持在线获取查看简介。
Please download to view, this article does not support online access to view profile.
随着生产成本的不断提高,在土地上进行单一的种植很难取得较高的收益,运用双膜覆盖西瓜套种玉米的无公害栽培技术,受到广泛的推广与应用,成为农民致富的主要产业之一。作者就
在线性规划问题中,如果原始问题(P)和对偶问题(D)中有一个可行,那么它们的最优值相等,而在锥规划问题中,“零对偶间隙”这一性质往往是不成立的,很自然地,我们要问:是否存在某些形式
Hilbert不等式(包括积分型和离散型)是分析学中的重要不等式.本文通过引入适当权函数的方法,对积分型和半离散型 Hilbert不等式进行一些改进、推广,证明了常数因子是最佳的,并给出
在工农业生产及其科学研究中,大量的实际问题可由具间断系数的二阶椭圆方程刻画,这类由间断系数所导致的真解在间断面上出现跳跃的现象,我们称之为界面问题,间断面称之为界面.由于
对于幼儿来说,家庭与幼儿园是其生活中的两个重要环节.虽然家庭教育与幼儿园教育分别具有不同的特点,但是家庭教育必须同幼儿园教育相融合,从而能够实现相互之间的融合.因此,
本文对任意有限p-群P,定义了一个新的特征子群序列此处公式省略:,并证明了当G为p-稳定群时,如果此处公式省略:,则在适当条件下,每个Di(P)均为G的特征子群.该结果推广了Glauberman