例外簇相关论文
向量变分不等式的基本问题之一是解的存在性问题.本文主要利用例外簇的方法去研究向量变分不等式(记为(VVI(K,T)))(?)响量优化(记为(VOP))的解......
变分不等式理论是当今非线性分析的重要组成部分.它在最优化理论、微分方程、控制论、对策论、社会经济平衡理论等领域有着广泛的......
在本文中,我们主要运用本质映射来研究变分不等式解的存在性问题及其应用到半线性椭圆型不等式;另外我们还运用例外簇方法来研究变......
平衡问题是变分不等式问题、凸优化问题、不动点问题、互补问题、纳什平衡问题等的推广.对平衡问题研究的不断深入,为我们研究金融......
变分不等式研究是最优化理论研究的一个热点.张量变分不等式自2018年提出以来,受到广泛关注.本文研究混合张量变分不等式解的存在......
混合向量变分不等式是一类较为广泛的数学模型,包含了变分不等式问题,最优化问题及向量变分不等式问题等.它在力学,博弈论,经济等......
拟变分不等式在经济均衡,生物科学,工程等领域有着广泛的应用.广义Nash均衡问题在一定条件下可转化为拟变分不等式问题,拟变分不等......
向量优化理论在交通运输、经济金融、资源分配等领域均得到了广泛的应用.解的存在性问题是向量优化问题研究的基本问题.本文主要研......
本文主要在Hadamard流形上研究无界闭凸集上变分不等式解的存在性.为保证线性空间(欧氏空间,Banach空间)上无界闭凸集上变分不等式......
学位
在这篇文章中,一方面,我们利用例外簇来考察变分不等式解的存在性.文中给出了α-例外簇的概念,并据之给出了变分不等式解的存在性......
本文主要研究集值映射的变分不等式问题和最优化问题解的存在性.本文主要是利用例外簇代替强制条件研究集值映射的变分不等式问题......
本文主要是研究集值变分不等式解的存在性及集值含参变分不等式解集的稳定性问题.首先,给出有限维空间集值变分不等式的一个例外簇概......
文章主要利用例外簇概念研究赋范空间中强变分不等式问题和一致凸和一致光滑Banach空间中广义变分不等式问题的解的存在性.论文结......
本文讨论对称锥互补问题(SCCP)解的性质,主要内容包括以下两个方面.第一,考虑一般的SCCP,首先引入例外簇的概念,然后,通过使用引入......
本文主要在Hadamard流形上研究无界闭凸集上变分不等式解的存在性.为保证线性空间(欧氏空间,Banach空间)上无界闭凸集上变分不等式解......
学位
变分不等式理论自上世纪60年代提出以来,由于在数理经济学,力学,工程学等学科有广泛的应用,因此得到深入研究.解的存在性研究是变分不......
对一般凸集约束下的变分不等式问题提出了一个新的例外簇概念 .基于此概念 ,给出了变分不等式问题解存在的一个充分条件 ,此条件弱......
本文在Banach空间中对变分不等式的例外簇,严格可行性及解的存在性三者之间的关系进行了研究,将补问题中的相应结果进行了推广.首......

