互近邻相关论文
分类问题是数据挖掘的主要任务之一。分类算法是指通过训练得到一个分类模型并对未知类别的样本进行预测,它在数据分析中的应用极......
针对聚类算法在检测任意簇时精确度不高、迭代次数多及效果不佳等缺点,提出了基于局部中心度量的边界点划分密度聚类算法——DBLCM......
数据流分类作为数据挖掘领域中的一个重要分支,能够获取数据流中有价值的信息,已成为当下研究热点之一。数据流具有可变、无限、快......
为解决数据流分类过程中样本标注和概念漂移问题,提出了一种基于实例迁移的数据流分类挖掘模型.首先,该模型用支持向量机作学习器,......
提出路网中的互近邻查询问题.给定路网G(V,E),对象集P,查询点q,近邻数k1和k2,互近邻查询返回既是q的k1近邻,又是q的反k2近邻的对象......

