论文部分内容阅读
Effects of molten state of ultrasonic welded joints of plastics on their strength were investigated. Physical parameters such as temperature, viscosity and thickness of melting layers of plastic material joints were measured and analyzed. Results show that when the welding vibration amplitude and pressure increase, the temperature increases, the viscosity decreases, and the thickness of molten layer decreases. The microstructure of weld fusion zone was observed by using an optical microscope. It was found that there is strong orientation along transverse direction in the microstructure of fusion zone. Testing results show that the mechanics performance of welded joints are obviously anisotropic, and strongly affected by the thickness of molten layer and the extent of orientation.
Effects of molten state of ultrasonic welded joints of plastics on their strength were investigated. Physical parameters such as temperature, viscosity and thickness of melting layers of plastic material joints were measured and analyzed. Results show that when the welding vibration amplitude and pressure increase, the temperature increase, the viscosity decreases, and the thickness of molten layer was decreased by using an optical microscope. It was found that there is strong orientation along transverse direction in the microstructure of fusion zone. Testing results show that the mechanics performance of welded joints are obviously anisotropic, and strongly affected by the thickness of molten layer and the extent of orientation.