论文部分内容阅读
Shared-aperture technology for multifunctional planar systems,performing several simultaneous tasks,was first introduced in the field of radar antennas.In photonics,effective control of the electromagnetic response can be achieved by a geometric-phase mechanism implemented within a metasurface,enabling spin-controlled phase modulation.The synthesis of the shared-aperture and geometric-phase concepts facilitates the generation of multifunctional metasurfaces.Here shared-aperture geometric-phase metasurfaces were realized via the interleaving of sparse antenna sub-arrays,forming Si-based devices consisting of multiplexed geometric-phase profiles.We study the performance limitations of interleaved nanoantenna arrays by means of a Wigner phasespace distribution to establish the ultimate information capacity of a metasurface-based photonic system.Within these limitations,we present multifunctional spin-dependent dielectric metasurfaces,and demonstrate multiple-beam technology for optical rotation sensing.We also demonstrate the possibility of achieving complete real-time control and measurement of the fundamental,intrinsic properties of light,including frequency,polarization and orbital angular momentum.