【摘 要】
:
[摘 要]教育在不断改革,观念在不断更新,如何使数学知识更贴近生活,更具有实用性,更富有趣味性,以及如何找到提高学生解决实际问题能力最有效的途径与方法是教师一直关注的问题。结合一堂分式方程的应用课,谈谈如何发挥学生的主观能动性,从而提高学生利用数学知识解决生活问题的能力。 [关键词]生活化;分式方程;实用性;趣味性 [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-90
其他文献
[摘 要]计算教学一直是数学教学中的一个难点。审视计算教学,发现很多教师只注重学生基础知识和基本技能的训练,期待通过“练”来促进学生巩固和强化算理,“精讲多练”成为计算课常见的教学模式。这样的教学模式既浪费时间,又增加学生的学习负担。在计算教学中,设置“陷阱”,让学生先掉进“陷阱”,进行反思,厘清错因,再从“陷阱”中出来,可加深学生对知识的理解,提高计算教学的效率。 [关键词]计算教学;“陷阱”
[摘要]“三疑三探一拓展”教学法是指课堂教学过程中设疑自探、解疑合探、质疑再探、拓展运用。在“分数除法”单元中运用“三疑三探一拓展”教学法时,在“设疑自探”环节应充分考虑教材编排特点,提供丰富的问题情境,落实“四基”目标;在“解疑合探”环节应加强直观教学,落实学生的主体地位,促进学生理解计算方法;在“质疑再探”环节应着力培养学生的问题意识,提高学生问题解决能力;在“拓展运用”环节应凸显数形结合思想
[摘 要]针对教材编写的烙饼问题存在的所答非所问、脱离实际且不科学、违背常识及不是最优方案等几方面问题,给出了六种既实用且更优化的烙饼方案,并论证了它们在生活中的实际应用。 [关键词]烙饼问题;优化;烙饼方案 [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2021)14-0001-04 新课程改革以来,为了贯彻课改理念及其相关要求,“烙饼问题”作为“
[摘要]在教学中渗透数形结合思想、转化思想等,是发展学生数学核心素养的主要着力点。以“线段图”为例,用好、用活画图策略,就能让学生在画图、说图等活动中学会思考、分析、比较,数学学习更富理性。 [关键词]画图;说图;数学;理性 [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068( 2020) 11-0024-02 画图策略不仅能把隐晦的关系具体化、直观化,
[摘 要]数学知识是有序的,学生学习数学知识的过程是有序的,学生数学思维的生长过程也是有序的。在数学教学中,教师应循着学生思维的“序”,循着数学知识的“序”, 逐渐发展学生的数学思维,培养他们的数学素养。 [关键词]数学知识;数学学习;循序渐进;数学思维 [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2018)35-0072-02 序,即次序、序列、条理
[摘 要]数学知识之间都有一定的关联性。开展比较教学,可以让学生在新旧知识的比较中提升认知思维递进的梯度,在正误比较中提升探索思维观照的广度,在解法比较中提升解题思维理解的深度,从而提升学生的思维能力和数学学习力。 [关键词]比较;思维;分数乘法 [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2021)17-0073-02 解决分数实际问题的教学在苏
[摘 要]课堂是学生学习的场所,更是师生知识分享、思维碰撞、智慧成长的舞台。有效搭建交流、操作、辩论、探究等互动平台,可以让知识在对话中增值,激情在交流中点燃,思维在碰撞中灵巧,智慧在互动中生成,有效地提高了个体和群体的学习力。 [关键词]互动 共生 小学数学 思维 生成 [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2015)17-006 课堂,是师生
[摘 要]“用字母表示数”这一课是学生首次正式接触代数领域的内容,标志着学生的思维由算术空间正式进入代数空间,其重要性不言而喻。通过“在不疑处设疑”“在存疑处释疑”“在释疑后释放”,对“用字母表示数”的教学设计进行改进与思考,实现教与学的有效互动。 [关键词]代数;字母;教学设计;教与学 [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2017)17-003
[摘要]在教与学的过程中,处理好学与恩的关系变得为重要,尤其是计算教学。引导学生通过理性思考,能生成创造性问题,成为教学素材;引导学生通过形象思维,能直观形象地理解算理,一劳永逸;引导学生通过转化思想,能将新知转化成旧知,打通算法;引导梳理反思,让知识体系结构更全面,便于理解掌握。 [关键词]小数乘法;计算教学;思考 [中图分类号]G623.5 [文献标识码]A [文章编号]1007-90
数学的结构性特点在客观上决定了数学教学必须追根溯源,既要关注每一个教学内容的“今生”(内涵意义),又要追溯其“前生”(已有基础),更要约定“来生”(后续发展);既要关注每一个学生的“今生”(方法源),又要追溯其“前生”(知识源),更要约定“来生”(思想源)。这样能让数学教学内容和学生已有的知识经验相结合,给学生提供发展的平台,实现知识量的扩充和认识水平的提升。 一、追溯“前生”,为新知的理解提供