Dynamical Behaviors of Reaction-Diffusion Recurrent Neural Networks

来源 :南京大学 | 被引量 : 0次 | 上传用户:myxiu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在第一章中,研究了一类具有连续分布延时的反馈神经网络模型的平衡点的存在唯一性,以及周期解的存在性和全局稳定性。通过利用不等式? 以及运用同构定理,得到了一系列简单有用的条件。 在第二章中,研究了一类具有连续分布延时的随机反应扩散的神经网络模型。通过构建恰当的Lyapunov函数,以及运用非负半鞅收敛性定理,得到了该网络平衡解几乎必然指数稳定和矩指数稳定的充分条件。最后我们给出了一个例子验证了条件的正确性。本文所得到的结果不要求激励函数是可导,有界,单调非减的,也不要求连接权矩阵是对称的,在解决最优化问题等方面有重要意义。因此我们推广和完善了以前的结果。
其他文献
本文从可计算分析的观点研究测度论中函数的可计算性问题。 作为一门新兴的理论计算机学科,可计算分析研究连续型计算的客观规律,如实数、实数集、实函数的可计算性,等等。在
本论文将功的互等定理法推广于求解基于Reissner理论的厚矩形板弯曲问题。得到了中厚板虚拟功的互等定理,并利用该定理求解了均布载荷作用下不同边界条件厚矩形板弯曲的挠曲
本硕士论文研究两类非线性动力系统的动力学行为.它由两个相互独立的部分组成. 第一部分研究非自治系统 xn(t)+f(x(t))x(t)+∫t—∞(t—s)g(x(s))ds=e(t),运用重合度延拓
本文中我们将广义逆的稳定性理论应用于大范围分析和有界线性算子的谱理论。具体地有以下: 在第2章中,我们应用广义逆的稳定特征得到广义谱理论中广义预解式存在的充分必要
该文将动态几何与一般几何自动作图方法结合,提出智能动态几何的观念,并开发了相应软件MMP/Geometer,作为国家973项目"数学机械化平台"的模块之一.智能动态几何软件,具有动态
本文针对微分方程稳定性理论的问题,利用微分不等式、积分不等式、解对初值的连续性、微积分中值定理和Liapunov直接法研究了非自治系统零解关于全部变元的稳定性和非自治系
本文研究的出发点是支持向量机的推广性能,本文研究了Rademacher复杂性与覆盖数和VC维这两种常见的函数集容量的度量量的关系,以及SVM在这三种容量下的推广性能,主要内容安排如
  本文研究复Monge-Ampère型方程的Dirichlet边值问题,证明了在强拟凸域-D上光滑解的存在性。Monge-Ampère方程是完全非线性偏微分方程研究领域的一个热点,Caffarelli,Kohn
本文第一部分主要讨论方程组(E1){x=1/a(x)(ψ(y)-F(x))y=-a(x)g(x)(E1)没有闭轨的条件,基本思路是在平面上找到一点,使得系统从这一点出发的正(负)半轨趋向无穷远,而负(正)半轨
无穷维动力系统中的一个重要问题是研究发展型偏微分方程的解半群在适当的Banach空间中的全局吸引子的存在性.但就我们所知,所有全局吸引子的存在性问题的理论研究和应用研究