多孔介质渗流问题守恒特征线数值方法及理论

来源 :山东大学 | 被引量 : 0次 | 上传用户:wsq27028320
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多孔介质中的流体运动方程广泛应用于地下水、环境科学和油藏模拟等领域.模型主要包括了流体的流动和质量的转移,体现着流体本身的质量守恒、能量守恒等物理性质.其中重力、粘度、毛细管力、密度等对该物理过程都起着重要作用,而工程上考虑的重要参数一般包括流体速度、压力、温度以及浓度等.数学上该模型由描述多孔介质中的速度方程即Darcy定律和描述组分混溶传质过程的浓度方程构成.基于一些合理的假设条件可以将方程简化,但仍表现为依赖于时间的非线性耦合问题.对此模型研究保持物理性质的高效数值模拟格式有着重要的实际意义和价值.  渗流的速度方程通常由Darcy定律描述,它体现了流体的平均速度与压力梯度的线性关系.由于压力和速度的重要性,对不可压缩条件下的质量守恒方程和Darcy方程构成的模型一般采用的是混合元离散格式,这样即保证速度和压力的精度,又能保证局部的质量守恒.经典的混合元空间Raviart-Thomas、Brezzi-Douglas-Marini等保证了速度法向分量的连续性,并且都给出了解的存在唯一性及最优的误差估计.大量的稳定化技术也可以用来求解Darcy问题.例如Masud和Hughes加入的稳定项使得连续的速度压力都是有效的,当然还有加一个平方项或者引入Bubble函数等稳定化技术.有时需要速度是连续的,也就是切向方向速度也是连续的,Arbogast和Wheeler给出了一类连续速度通量的逼近格式,虽然损失了散度范数的最优收敛率,但还是得到了最优的L2模误差估计.  Darcy流与Stokes流耦合问题在实际中也有着广泛应用.即在多孔介质的基础上耦合一个自由流区域的Stokes问题,两个子问题内边界由Beavers-Joseph-Saffman条件确定,这两个子问题的正则性要求不一样,并且内边界上切线速度是不连续的.Layton等人详细介绍了该模型,并引入Lagrange乘子证明了弱解的存在唯一性.Yotov给出了一类求解技术,在两个子区域采用不同的离散空间,即在Stokes区域上用DG求解,而Darcy区域用混合元技术求解.这样不利于处理内边界条件和编程.而相同网格剖分下的同一种混合元离散无疑是高效的,Burman给出非协调的Crouzeix-Raviart有限元空间逼近格式.芮和张对其改进,引入了更简单的罚项,保证稳定的基础上还有局部质量守恒性.Arbogast和Brunson还将提出的连续速度空间用到该耦合问题中,并给出了最优的L2误差估计.对于奇异扰动问题即Brinkman方程,Mardal给出了该问题弱形式解的存在唯一性.提出了一种绝对稳定的有限元格式,并对Brinkman问题给出了系统的理论分析和最优的误差估计.在此基础上后面陆续有很多的离散格式.  而组分的混溶传质过程最终可以由一个关于浓度的对流扩散方程所表示.当对流占优时,由于数值振荡和物理弥散的效应,传统的有限元和有限差分在进行模拟时效果并不理想,此时特征线技术很好的解决了这一难题.该技术从数学上将对流扩散问题转化一个等价的易处理的扩散问题,体现出很好的优越性,并且对于时间步长不再有很强的限制,用来模拟大时间步长的实际问题时效果明显.该思想早期是由提出的向前追踪特征线方法,但是这样的技术破坏了原始空间剖分,存在很大的局限性.Douglas和Russell1982年提出了向后追踪的修正特征线技术(MMOC),给出基于有限元和有限差分方法下的离散格式,得到有限元离散下最优的H1与L2模估计.此后该技术迅速得到广泛应用,Russell将其运用到了不可压缩的混溶驱动模型中去,压力方程采取有限元离散,并给出了最优阶的误差估计.Ewing等也采用MMOC技术求解浓度方程,但对压力方程采用更加有效的混合元技术,使得速度、压力和浓度均能达到最优估计.此外在模拟对流扩散问题时,一个重要的性质就是要保证质量守恒,也就是组分的总量在不考虑源汇项的情况下随时间是平稳不变的,上述技术并不能满足这一点.芮提出了对流扩散问题的质量守恒格式,此时的速度有连续性的要求.Celia给出了ELLAM技术保证了质量守恒,但是计算有些复杂,Wang给出了ELLAM格式在对流扩散问题中的收敛性及最优估计,并给出了一些实际模拟.对于更为复杂的可压缩混溶驱动的模型,Douglas和Roberts给出可压缩混溶驱动的数学模型,并给出了基于有限元和混合元方法的半离散格式的误差估计,此后陈给出了混溶驱动的全离散数值格式.袁和程也分别给出了基于MMOC的有限元误差估计.  韩和吴对于Stokes方程提出了基于交错网格的混合元离散技术,即速度分量和压力使用三套不同的网格剖分,数值模拟更加方便.我们在此基础上加以修改得到对Darcy方程适用的连续速度逼近.参照对流扩散问题的守恒格式,得到渗流中的不可压缩混溶驱动模型的质量守恒的特征线数值格式及误差分析,随后给出了可压缩混溶驱动模型的全离散数值格式及误差分析,并分别给出数值实验进行验证.  本文的组织结构如下:  在第一章中,介绍了多孔介质渗流问题的数学模型.基于流体的物理性质给出Darcy定律及质量守恒方程.结合状态方程给出了混溶驱动中组分传质的质量守恒方程,得到所谓的浓度方程.同样也给出了可压缩流体的浓度方程.给出了常用的函数空间的记号和范数定义,最后给出了本文理论推导需要的一些不等式.  在第二章中,对于Darcy问题,给出了基于交错网格剖分下的连续速度逼近.借助RT空间,得到很好的插值性质.给出了数值格式的误差分析.虽然得不到散度范数的误差,但还是给出了L2误差估计.数值算例中与Arbogast和Wheeler中提到的混合元空间进行了比较,数值结果接近,但是用的自由度相对较少,这样可以减少时间复杂度.  在第三章中,首先用连续元求解稳态的Dracy-Stokes耦合问题,给出了全离散格式及误差分析,数值实验验证了收敛性.第二部分考虑了扰动的Darcy-Stokes问题,即Brinkman模型,误差分析得到L2误差估计,数值实验验证了未知量受扰动因子影响下数值逼近的收敛率.  在第四章中,给出了多孔介质中不可压缩混溶驱动的守恒特征线数值格式.运用提出的守恒特征线格式,得到混溶驱动的守恒特征线技术(MCC),理论证明了数值格式的质量守恒性.利用外插技术,将速度方程和浓度方程解耦,在一些归纳假设的条件下给出离散格式的误差分析和最优的L2模误差估计.数值算例验证了该逼近格式的质量守恒性,未知量的收敛阶也是与理论一致的.最后给出了一个实际问题的模拟,验证了数值格式的有效性.  在第五章中,讨论了多孔介质可压缩混溶驱动模型的特征线数值格式.该模型为较强的非线性耦合问题,利用投影算子首先给出未知量的初始值,然后基于一些归纳假设进行误差分析,对速度方程和浓度方程对应的误差方程分别进行估计,再整合到一起最终得到最优的误差估计.最后用数值实验验证了理论分析.
其他文献
河南高远研制的橡胶沥青洒布车是一种专业洒布橡胶沥青的智能化高科技产品,属国内首创。该产品操作简便,在吸收国内外同类产品各项技术的基础上,增加了确保施工质量的技术含
本文研究国内开放式基金长期投资业绩的评价问题。首先回顾了传统的基金业绩评估模型与指标,如T-M择时择股能力模型与Sharpe指数、Jensen指数、Treynor指数等。我们通过客观的
本论文是研究一类带分数阶拉普拉斯算子的非自治椭圆方程的层解。分数阶拉普拉斯算子是一类非局部椭圆算子,它出现在许多远程或反常物理现象中。我们证明了这类非线性椭圆方程
近年来,尽管全基因组用tagSNP(代表性单核苷酸多态)检测普通疾病与常见变异的关联已经取得了一定的成效,但用来检测稀有变异关联的研究还未取得较好的成果。近年的研究表明,普通疾
人类的疾病多为由遗传和环境因素共同作用引起的复杂性疾病。目前全基因组关联分析(Genome Wide Association Study)已经成功鉴定了上千种与人类复杂性疾病相关联的SNP位点。
在解析数论中,SL(n,Z)上尖形式的傅立叶系数的性质是个非常重要的研究课题,著名的Ramanujan-Petersson猜想仍然是个没有解决的问题.这个猜想是说任何一个尖形式的第n个傅立叶系
近几十年来,由于反周期解问题在物理、生物和经济等众多学科领域都有广泛的应用,因而微分方程的反周期解问题受到国内外众多学者的广泛关注,并取得了很多有意义的结果.本文主要
本文利用变分方法研究了几类非线性微分方程的多解问题.全文分六章.  第一章,介绍了本文的研究背景和主要工作.  第二章,讨论次线性二阶Hamiltonian系统ü-L(t)u+Fu(t,u)=0
LB3000XC环保节能沥青混凝土拌和站是无锡华通公路机械科技有限公司自主研制、不断创新并参考了国内外多家间歇式沥青拌和站的优点研发的产品。其技术含量高、设计理念先进,
“为人民服务”,作为中国共产党人的根本宗旨,当时在延安时期提出有着全新的时代内涵。正如毛泽东同志所说的“共产党人的一切言论行动,必须以符合最广大人民群众的最大利益,