论文部分内容阅读
极端环境微生物具有独特的基因类型,特殊的生理机制及特殊的代谢产物,因此是一类具有很大开发潜力的新型微生物资源。本研究以两个极端环境——深海和北极地区来源的放线菌为研究对象,探究了不同深度(34-3,235 m)的南海沉积物中放线菌的多样性分布及其产物的生物活性,并对一株来自北极土样的链霉菌新种进行了鉴定。
深海是一种极端且独特的环境,始于约海底200米的深度,分为深层区(深度在200- 2000米之间)、深渊区(深度在2000 - 6000米之间)和超深渊区(深度在6000米以下)。深海是海洋放线菌资源研究和次生代谢物开发利用的热点。本研究从不同深度的南海样品(34-3,235 m)中共分离到43株放线菌,其中32株放线菌来源于深海(1,645-3,235 m)。 研究发现相比于稀释平板法(放线菌分离比例3.85%),使用 “平板印章” 法处理样品,能分离获得更多的放线菌(放线菌分离比例为15.18%);而不加热预处理比加热预处理具有更好的分离效果;RH和M6是更有效的分离培养基。同时,采用低温培养(10 ℃)的方法对从深海样品中分离放线菌进行培养能显著提高获得放线菌的比率。深海区(深度1675-3235 m)样品分离获得的放线菌属数量(6个属)和多样性要高于浅海沉积物(深度<200 m)样品(3个属)。此外,43 株放线菌经过16S rRNA基因序列分析,分别属于3个目,6个科和6个属,以Micromonospora (n=23)和Streptomyces (n=4)属为主,其次是Dietzia(n=2),Tsukamurella(n=2),Blastococcus(n=1)和Microbacterium(n=1)。对43株放线菌活性筛选结果表明,18株放线菌发酵产物粗提物对 Staphylococcus aureus ATCC 5165 (37.21%) 和 Candida albicans ATCC 10231 (27.91%) 有抗菌活性,而有活性的18株放线菌经过16S rRNA基因序列分析分别属于Micromonospora(n=8), Streptomyces(n=8),Tsukamurella(n=1)和Microbacterium (n=1)。与来自浅海沉积物的活性放线菌比例(11株含有4株活性菌)相比,深海样品具有更高的活性放线菌比例(32株含有14株活性菌)。次级代谢产物特定合成基因PCR筛选结果显示,44.19%的分离放线菌具有PKSII合成基因,37.21%的分离放线菌具有 PKSI 合成基因,而 11.63%的分离放线菌具有 NRPS 合成基因。其中 31 株放线菌(72.09%)至少含有一种合成基因(PKSII, PSKI或NRPS),这些菌株经过16S rRNA基因序列分析分别属于 Micromonospora(n=21),Streptomyces(n=8),Blastococcus (n=1)和Microbacterium (n=1)。我们的研究初步发现,南海深海区(2017-3235 m)作为一个重要的极端环境,具有极高的物种丰富度,并具有产生新颖结构次生代谢物的潜力。
本研究还对一株北极土壤分离的放线菌进行了新种鉴定。北极地区长年寒冷、干燥、辐射强,地下形成永久冻土。菌株ZLN712T分离自北极土壤(78°55847"N 012°13323"E)。菌株ZLN 712T的16S rRNA基因序列以及形态特征均表明其属于链霉菌属。菌株ZLN712T 与已鉴定的模式菌株 Streptomyces polygonati NEAUG9T 和 Streptomyces yanglinensis 1307T的相似率分别为 99.17%和 98.10%。 基因组 DNA-DNA 杂交结果显示,菌株ZLN 712T与模式菌株的正反交值(54.4±0.0%)均低于种的界限,由此可以看出菌株可能为链霉菌属的新种。利用四个管家基因(atpD,gyrB,recA 和 rpoB)进行多基因座序列分析(MLSA),结果表明,ZLN712T菌株与近缘菌株的MLSA距离大于阈值0.007。菌株ZLN712T基因组的GC含量为72.77%。通过对菌株ZLN712T进行多相分类(包括培养特征、形态特征、生理生化特征、化学特征和分子分类特征)的鉴定,再与模式菌株Streptomyces polygonati NEAUG9T和Streptomyces yanglinensis 1307T的分类特征进行比较,发现菌株ZLN712T(=CCTCC AA 2018011T=DSM 107266T)与参照菌株有明显的区别,因此确定为链霉菌新种,命名为Streptomyces septentrionalis sp. nov.。本研究表明北极作为另一个重要的极端环境,可作为新型放线菌的新来源,并可能从中挖掘出更多活性天然产物。
深海是一种极端且独特的环境,始于约海底200米的深度,分为深层区(深度在200- 2000米之间)、深渊区(深度在2000 - 6000米之间)和超深渊区(深度在6000米以下)。深海是海洋放线菌资源研究和次生代谢物开发利用的热点。本研究从不同深度的南海样品(34-3,235 m)中共分离到43株放线菌,其中32株放线菌来源于深海(1,645-3,235 m)。 研究发现相比于稀释平板法(放线菌分离比例3.85%),使用 “平板印章” 法处理样品,能分离获得更多的放线菌(放线菌分离比例为15.18%);而不加热预处理比加热预处理具有更好的分离效果;RH和M6是更有效的分离培养基。同时,采用低温培养(10 ℃)的方法对从深海样品中分离放线菌进行培养能显著提高获得放线菌的比率。深海区(深度1675-3235 m)样品分离获得的放线菌属数量(6个属)和多样性要高于浅海沉积物(深度<200 m)样品(3个属)。此外,43 株放线菌经过16S rRNA基因序列分析,分别属于3个目,6个科和6个属,以Micromonospora (n=23)和Streptomyces (n=4)属为主,其次是Dietzia(n=2),Tsukamurella(n=2),Blastococcus(n=1)和Microbacterium(n=1)。对43株放线菌活性筛选结果表明,18株放线菌发酵产物粗提物对 Staphylococcus aureus ATCC 5165 (37.21%) 和 Candida albicans ATCC 10231 (27.91%) 有抗菌活性,而有活性的18株放线菌经过16S rRNA基因序列分析分别属于Micromonospora(n=8), Streptomyces(n=8),Tsukamurella(n=1)和Microbacterium (n=1)。与来自浅海沉积物的活性放线菌比例(11株含有4株活性菌)相比,深海样品具有更高的活性放线菌比例(32株含有14株活性菌)。次级代谢产物特定合成基因PCR筛选结果显示,44.19%的分离放线菌具有PKSII合成基因,37.21%的分离放线菌具有 PKSI 合成基因,而 11.63%的分离放线菌具有 NRPS 合成基因。其中 31 株放线菌(72.09%)至少含有一种合成基因(PKSII, PSKI或NRPS),这些菌株经过16S rRNA基因序列分析分别属于 Micromonospora(n=21),Streptomyces(n=8),Blastococcus (n=1)和Microbacterium (n=1)。我们的研究初步发现,南海深海区(2017-3235 m)作为一个重要的极端环境,具有极高的物种丰富度,并具有产生新颖结构次生代谢物的潜力。
本研究还对一株北极土壤分离的放线菌进行了新种鉴定。北极地区长年寒冷、干燥、辐射强,地下形成永久冻土。菌株ZLN712T分离自北极土壤(78°55847"N 012°13323"E)。菌株ZLN 712T的16S rRNA基因序列以及形态特征均表明其属于链霉菌属。菌株ZLN712T 与已鉴定的模式菌株 Streptomyces polygonati NEAUG9T 和 Streptomyces yanglinensis 1307T的相似率分别为 99.17%和 98.10%。 基因组 DNA-DNA 杂交结果显示,菌株ZLN 712T与模式菌株的正反交值(54.4±0.0%)均低于种的界限,由此可以看出菌株可能为链霉菌属的新种。利用四个管家基因(atpD,gyrB,recA 和 rpoB)进行多基因座序列分析(MLSA),结果表明,ZLN712T菌株与近缘菌株的MLSA距离大于阈值0.007。菌株ZLN712T基因组的GC含量为72.77%。通过对菌株ZLN712T进行多相分类(包括培养特征、形态特征、生理生化特征、化学特征和分子分类特征)的鉴定,再与模式菌株Streptomyces polygonati NEAUG9T和Streptomyces yanglinensis 1307T的分类特征进行比较,发现菌株ZLN712T(=CCTCC AA 2018011T=DSM 107266T)与参照菌株有明显的区别,因此确定为链霉菌新种,命名为Streptomyces septentrionalis sp. nov.。本研究表明北极作为另一个重要的极端环境,可作为新型放线菌的新来源,并可能从中挖掘出更多活性天然产物。