维数约减相关论文
高光谱图像是由成像光谱仪在数十至上百个窄光谱波段范围内对地物成像而得,不仅能够捕获地物的二维空间信息,还能获得地物连续的光......
大数据时代,数据以维数高、知识体系混杂、数据量大等特点呈现,给基于数据的研究带来巨大的挑战。维数约减是从高维数据中抽取知识......
稀疏表示是近年出现的一种新颖且热门的技术,受到很多研究者的广泛关注。其目前己被广泛应用于计算机视觉和机器学习,包括人脸识别......
在机器学习和模式识别领域,主成分分析(Principal Component Analysis,PCA)和线性判别分析(Linear Discriminant Analysis,LDA)及......
特征选择作为维数约减领域的一个重要分支,对增加机器学习结果的精确度和提高计算效率有着显著的作用。虽然特征选择算法已在监督......
维数约减已经成为当前机器学习领域的受人关注的研究热点。维数约减是将数据由高维约减到低维的过程而用来揭示数据的本质低维结构......
维数约减和半监督学习一直都是机器学习中两个热门的课题。其中维数约减希望通过寻找一个有效的投影矩阵将高维空间中的数据投影到......
随着遥感对地观测技术的飞速发展,成像光谱数据呈现指数增长,特别是人工智能技术和高性能计算的加速崛起,进一步推动了成像光谱大......
流形学习自2000年提出以来,一直备受研究人员的关注。在流形学习中,人们假设样本是均匀采样于一个高维空间中的低维流形。在此假设基......
步态识别根据人走路的姿态进行身份识别,是一种生物特征识别方法。与其它生物特征识别技术相比,步态具有非接触和难以隐藏等独特优......
维数约减是机器学习领域的一个研究热点。随着信息采集技术的不断发展,数据呈现了爆炸式增长,如何从所获得的海量高维数据中获得有......
传统的Isomap算法仅侧重于当前数据的分析,不能提供由高维空间到低维空间的快速直接映射,因此无法用于特征提取和高维数据检索.针......
作为计算机图像分析和理解领域最重要的应用之一,人脸识别技术在近年来已得到飞速发展并日趋完善。本文首先介绍人脸识别概念及图像......
现有基于边信息的半监督维数约减算法大都是直接将保留边信息和数据拓扑结构的目标函数相加,因此数据拓扑结构中的错误连接不会因......

