离散可积系统相关论文
离散可积系统是离散微分几何的一个重要内容,它与圆模式理论密切相关。本文研究了四边形图上离散可积系统的多维相容性及其拉格朗日......
本文的研究可分为两类,一方面我们首先将Cauchy矩阵方法推广,并用推广的Cauchy矩阵方法研究了一系列离散可积系统的精确解,包括链K......
离散可积系统的变换和约化对于探讨方程间的联系以及构造精确解等具有重要意义.本文分为以下三部分进行讨论.第一,利用ABS链方程的......
学位
本文研究目标是展示离散可积系统与椭圆函数理论之间的密切联系,研究的主要内容是:构造离散可积系统的椭圆型解,以及可积系统本身......
穿衣方法最早是由Zakhrov和Shabat在上个世纪70年代创立的,它从一个积分算子F和两个Volterra算子K±出发,利用积分算子的三角分解关......
圆模式理论是一个丰富而有趣的领域,它起源于经典的圆填充理论。近年来得到了快速的发展并产生了很大的影响,它与离散微分几何、复分......
本课题主要研究离散可积系统及可积耦合系统。在第二章中,首先讨论了两个二阶的离散矩阵谱问题,然后研究了两个新的三阶的离散矩阵谱......
本文主要研究的是离散可积系统的可积性及其在对称约束下的双非线性化,得到新的可积辛映射和在Liouville意义下可积的Hamilton系统,......
本文利用孤子方程和其Backlund变换的相容性导出Date-Jimbo-Kashiwara-Miwa(DJKM)方程, Calogero方程和两类扩展Kadomtsev-Petvias......
学位
本论文主要研究:离散的微分-差分方程族的可积性及其在恰当Bargmann约束下的双非线性化,获得有限维完全可积的Hamilton系统和可积......

