数字集相关论文
由一个扩张矩阵和一个有限数字集确定的自仿测度是由等权的自仿恒等式唯一决定的,自仿测度的谱与非谱问题在近几年来得到了很多数......
在这篇论文中,将考虑Rn空间上的自仿测度的谱和非谱问题.这个问题源自于1974年的Fuglede猜测和Jorgensen与Pedersen对分形谱测度存......
设M ∈ Mn(Z)是扩张矩阵,D (?) Zn是有限数字集.由M和D所定义的迭代函数系:{Φd(x)=M-1(x+d}d∈D,x∈Rn可唯一确定一个自仿测度μM,D.本文......
设M为整数扩张矩阵,即M的所有特征值的模都大于1,M*为M的共轭转置,在前人研究的基础上,本文发现,将M*中的元素按模3或模4剩余类进......
设M ∈ 是一个扩张矩阵,D(?)Zn是一个基数为|D|的有限数字集.对于由矩阵M和数字集D构成的仿射迭代函数系{φd(x)=M-1(x+d)}d∈D,存......
自仿测度μM,D是由仿射迭代函数系{φd(x)=M-1(x+d)}d∈D唯一确定,关于自仿测度有很多开放性的问题,很多学者主要关注在什么条件下μM,......
设M ∈Mn(Z)是一个整数扩张矩阵,D(?)Zn是一个基数为|D|的有限数字集.由仿射迭代函数系{φd(x)=M-1(x+d)}d ∈D确定的自仿测度μM,......
学位
自仿测度μM,D的谱与非谱问题是自仿测度谱理论研究的主要内容之一而μM,D-正交指数系的有限性或无限性问题在研究自仿测度是否为......
自仿测度μM,D是由扩张矩阵M∈Mn(z)和一个有限的数字集D(?)Zn唯一确定的.1998年Jorgensen和Pedersen首次找到了一个自仿测度是谱......
考虑由扩张矩阵A=[po1q]及数字集D=[ij]0≤i≤|q|-1,0≤j≤ |q|-1]生成的自仿射tiles集T=T(A,D),其中p,q∈Z,|p|≥2,|q|≥2,通过对......

