奇异摄动问题相关论文
在物理和工程技术等应用领域中,许多的实际问题经常涉及求含极小参数解的微分方程,当方程中参数值有很小的变化时,会导致方程的解......
在科学与工程领域中,许多实际问题都归结为偏微分方程定解问题。然而,大部分偏微分方程难以求出解析解,只能采用数值方法近似求解......
科学工程领域中很多数学模型的解都具有激烈的振荡性。由于这一特性的存在,设计它们的高精度逼近算法常常具有一定的挑战性。太粗......
本文主要采用有限元方法来处理一维奇异摄动问题。将直接间断有限元方法应用到奇异摄动模型问题中,构造出适用于两点边值问题的数......
本文章主要应用积分算子理论和微分不等式方法(或者称作上、下解方法),在适当条件下来证明一类三阶非线性三点边值问题解的存在性......
奇异摄动问题是一类微分方程,它的显著特点是最高阶导数项上有一个较小的参数ε,称为摄动参数。小的摄动参数会导致奇异摄动问题的......
奇异摄动延迟微分方程常出现在许多科学与工程应用中,如流体力学、最优控制、化学反应、种群动态、环境、医学等领域,由于其带有小......
该文应用双参数法针对不同问题构造了几个新的有限元,分析其经典收敛性及各向异性收敛性;也分析了几个著名元的各向异性收敛性,并......
最高阶导数项含有小参数ε的微分方程称为奇异摄动问题,其解存在指数边界层或内部层.奇异摄动问题常常会在科学研究、工程实践中碰......
奇异摄动问题是一类微分方程,它的显著特点是最高阶导数项上有一个较小的参数ε,称为摄动参数。小的摄动参数会导致奇异摄动问题的解......
刚性微分方程在众多领域有很多应用,对其进行研究具有重要意义.众多学者对其投入巨大的精力进行研究,已取得了丰硕的成果. 本文......
奇异摄动方程出现在应用数学的各分支,这些方程的分析和数值处理引起了许多学者的注意.近三十年来,许多文章介绍了非经典的方法,这......
奇异摄动问题有着广泛的物理背景,其数值解法具有重要的理论和实际意义,一直受到计算数学界的关注.由于解的边界层效应,很难得到最佳......
本文主要运用微分不等式的技巧(或称为上、下解方法),在一定条件下证明了一类三阶非线性微分方程(不带小参数)三点边值问题解的存在......
有限差分方法、有限元方法、谱方法为求微分方程的三大数值方法,其中谱方法包括谱Galerkin方法、Tau方法和配点法。谱方法具有“无......
本文综合论述了奇异摄动理论的研究背景,并陈述了一些相关的概念、记号以及已有的结论。重点研究了奇异摄动理论中一些具体方程(这......
本文主要结合运用合成展开法和微分不等式理论研究两类具有边界层性质或内层性质的奇摄动边值问题. 第一章引言部分综述了摄动......
求解微分方程的间断有限元方法(DG)是近年来的热门研究课题,该方法广泛应用到了科学和工程等各个领域。本文将用直接间断有限元方法......
本文获得了Rosenbrock方法关于一类多刚性奇异摄动问题的定量收敛结果.这是对Strehmel等人于1991年所获的单刚性奇异摄动问题相应......
在Bakhvalov-Shishkin网格上,利用线性插值的Galerkin有限元方法求解一维对流扩散型的奇异摄动问题.在ε≤N~(-1)的前提下,通过使......

