四元数体相关论文
随着科学技术的发展,四元数矩阵在诸如航空系统、姿态控制等领域的应用日益广泛。与此同时,对系统的稳定性判断和状态估计是重要的......
学位
近年来,矩阵特征值反问题在结构设计、参数识别、自动控制、量子力学、光谱分析等领域有广泛的应用背景,因此关于特征值反问题的研......
循环矩阵是一类特殊的结构矩阵,它在信号处理、图像重建、编码技术等领域有着广泛应用.复数域上的循环矩阵类目前已有较多的研究成......
约束矩阵方程的求解问题是近年来数值代数领域中研究和讨论的重要课题之一,它在结构设计、参数识别、分子光谱学、非线性规划与动......
关于保秩1的加法映射,已在复数域上的全矩阵空间,一般域上的上三角矩阵空间及特征不为2也不为3的域上的对称矩阵空间上做了刻画,但......
学位
本文先从整体上分析了体上矩阵理论目前发展的景况,阐述了体上矩阵研究的困难性,然后对体上矩阵的三个方面的问题加以具体研究。文章......
体上矩阵是非交换代数研究的基本方向之一,自20世纪七八十年代以来中国学者在这个研究方向中取得了一些主要成果,但还有不少专题未被......
学位
本文先从整体上分析了体上矩阵理论目前发展的景况,阐述了体上矩阵研究的困难性,然后对体上矩阵的三个方面的问题加以具体研究.文章......
通过建立四元数乘积的一个弱可交换律,分别给出四元数体上的线性方程组的解和克莱姆解式、向量的相关性、矩阵的逆与秩以及线性变......
讨论了四元数体上的Vandermonde重行列式问题,给出了Vandermonde重行列式不为零的充分必要条件....
给出二半正定自共轭四元数矩阵之和及其矩阵Schur补的行列式不等式,推广与改进了相应的复矩阵结果.......
给出实四元数体上矩阵对称积的定义,得到了自共轭矩阵的对称积仍是自共轭矩阵的结论.最后得到可以通过判断对称积矩阵正定性来判断......
通过代数构造的方法讨论了四元数体上广义埃尔米特(Hermite)矩阵以及对应的广义埃尔米特二次型的酉对角化问题,同时也解决了所需广义......
以四元数的实表示为基础,结合爪形矩阵的结构特点,利用矩阵的拉直与Kronecker积,将爪形矩阵约束四元数矩阵方程AXB=C转换成无约束......

