Picard-Fuchs方程相关论文
关于平面Hamilton系统所对应的Abel积分的研究有着深刻的理论意义和广泛的应用背景.目前,这方面的研究主要集中在弱Hilbert第16问......
该硕士论文由五部分组成:第一部分是文献综述,简要介绍了微分方程分支理论的发展历史和目前的一些结果,并把该文的结果和前人的结......
本文利用分支理论和定性分析的方法,借助于计算机等辅助工具对几类多项式系统的极限环分支问题进行了研究。本论文共由五部分组成。......
本论文基于代数-几何思想,以Picard-Fuchs方程为工具,用E.HorozoV和I.D.Iiiev的研究方法,结合了分支理论和定性分析,借助于符号运算系......
关于平面Hamilton系统对应Abel积分的研究有着深刻的理论意义及广泛的应用背景.目前,这方面的研究主要集中在弱Hilbert第16问题上.......
利用Picard-Fuchs方程,研究了一类二次可逆系统周期函数的单调性问题,获得了在首次积分曲线是亏格1时的二次可逆系统周期函数单调......
利用Picard-Fuchs方程法及Riccati方程法,研究了一类二次可逆系统在任意n次多项式扰动下Abel积分零点个数的上界问题,得到了当n≥4......
证明了Abel积分I(h)=∮ΓhQ(x,y)dx-P(x,y)dy的零点个数的最小上界B(2n+2)=B(2n+1)≤3[n/2]+12[(n-1)/2]+4([p]表示P的整数部分),......
利用Picard-Fuchs方程法及Riccati方程法,研究了一类二次可逆系统在任意n次多项式扰动下Abel积分零点个数的线性估计,得到了当n≥3......

