K-均值算法相关论文
在大数据时代,广泛应用于各个领域的数据挖掘技术不断更迭,越来越多的企业致力于细分用户、深挖需求,力求最大化数据的商业价值。......
为了进一步提高网络安全趋势大数据的挖掘性能,提出一种基于Hadoop平台的网络安全趋势大数据深度挖掘方法。考虑网络安全趋势大数据......
经典算法对火灾烟气层高度判定存在无法划定烟气层纵向区间、计算步骤繁琐等问题,而K-均值算法具有自动进行类别划分的特征。以K-均......
以准确识别电力缴费过程中的敏感用户为目标,文章基于改进词向量模型设计了一种新的电力缴费用户画像方法.首先通过改进K-均值算法......
随着计算机技术的迅速发展以及数据库管理系统的广泛应用,越来越多的数据被存储起来,如何在这些海量的数据中寻找真正所需要的知识显......
在网络普及化的今日,人们在使用网络时留下了大量有价值的信息可供分析。面对着日益庞大的信息库,如何从中找出有用而不易被发现的......
随着高科技的发展,智能监控系统的应用越来越广泛。运动物体视觉分析作为智能监控中的一项核心技术,它包括运动物体检测与提取、物......
多示例学习的主要目的是通过学习训练集中的概念,为一些不可预知的包获取正确的类别标签。目前大量学者对多示例学习的理论及应用......
随着计算机技术和Internet的飞速发展,网络信息安全问题逐渐成为维护国家安全和社会稳定的一个焦点。入侵检测系统(Intrusion Dete......
随着网络的不断发展,特别是移动互联网和物联网,网络已成为生活不可或缺的一部分。伴随网络发展而来的是,网络安全、服务质量和网......
随着计算机技术,网络技术以及通信技术的快速发展和不断的融合,产生了许多新的应用环境。当人类社会步入二十一世纪,信息爆炸已经成为......
社区发现,是指在社会网络中发现有用社区结构的过程。随着科技的发展,社会网络以多种形式影响着现实世界中各个领域的方方面面,如朋友......
随着网络技术不断提高,计算机网络被广泛应用到人类活动的各个领域,网络安全也越来越受到人们的关注。为了能够需要能及时的发现恶意......
伴随着互联网的飞速发展,互联网的信息愈来愈多,呈指数级别增长。如何在这些海量信息中发现有价值的知识信息,是每个电子商务商家面对......
当今的社会网络,己不再是狭义上社会学研究的内容,转而成为了集尖端的科研价值与巨大的商业潜质于一体的火热研究课题,吸引着愈来愈多......
图像聚类已成为图像识别的一种关键技术。而医学图像识别是医学图像分析和理解的重要内容,在医学临床诊断中具有重要作用。因而,研......
K-Means算法和L2-SVM算法分别是聚类和分类中研究较热的算法。传统K-Means算法以欧氏距离为度量准则,忽略了样本各属性在聚类过程......
随着教育信息化进程的快速推进,在线学习成为一种主要的学习方式。各种在线学习平台中的资源即网络学习资源数量迅猛增长,然而其质......
城市应急救援时间是关键.最佳救援路径能否成功决策直接影响救援时间.本文在分析影响城市应急救援的基本因素的基础上,选择理论成......
K-means算法是一种基于划分的聚类算法.它的执行时间主要依赖于k值和初始点的选取,但是在实际问题中缺少对K取值的先验信息和有效......
根据封丘县土壤发生学特点遴选质地、有机质、土壤颜色、pH值、电导率和土壤发生层厚度等作为土壤属性向量,运用K-均值算法模型,对......
聚类分析是一种无监督的学习方法,是数据挖掘领域进行数据处理的重要分析工具和方法。K-均值聚类算法是一种典型的基于划分的方法,该......

