【摘 要】
:
The layered double hydroxide (LDH) is a kind of natural mineral, which can also be manually prepared. It has been practically applied in various fields due to its unique crystal structure and diversity of composition, size, and morphology. In this work, L
【机 构】
:
State Key Laboratory of Tribology,Tsinghua University,Beijing 100084,China;State Key Laboratory of T
论文部分内容阅读
The layered double hydroxide (LDH) is a kind of natural mineral, which can also be manually prepared. It has been practically applied in various fields due to its unique crystal structure and diversity of composition, size, and morphology. In this work, LDHs with different chemical compositions (Co2+, Mg2+, Zn2+, and Ni2+) and topographical features (flower-like, spherical, and plate-like) were successfully prepared by controlling the reaction conditions. Then, they were mechanically dispersed into base grease and their tribological properties were evaluated by a ball-on-disk tester under a contact pressure of 2.47 GPa. It was found that the variation of morphology, instead of chemical composition, had great influence on the tribological performance. The “flower-like” LDH sample with high specific surface area (139 m2/g) was demonstrated to show the best performance. With 1 wt% additive, the wear volume was only about 0.2% of that lubricated by base grease. The tribofilm with unique microscopic structure and uniform composition was derived from tribochemical reaction between LDH additives and sliding solid surfaces, effectively improving tribological properties of the lubrication system. This work provided the guidance for optimizing lubricant additives and held great potential in future applications.
其他文献
Impregnated graphite has attracted considerable attention and has been widely used as an ideal friction material in many fields. However, the influence of the friction temperature on its tribological properties has not been clearly studied; furthermore, t
The mechanism of hard surfaces worn by soft polymers is not clearly understood. In this paper, a new hypothesis has been proposed, it holds that the stress acting on the hard surface under certain working conditions is the main reason for wear of the hard
In this study we present a mechanism for the elastohydrodynamic (EHD) friction reduction in steel/steel contacts, which occurs due to the formation of oleophobic surface boundary layers from common boundary-lubrication additives. Several simple organic ad
The shaft mechanical face seal in a high-speed turbopump of a liquid rocket engine often operates under extremely harsh conditions. For example, a low-temperature and low-viscosity fluid (such as liquid oxygen or liquid hydrogen) is used as a lubricant. T
Tribocorrosion denotes an irreversible material degradation for several metallic components used in corrosive environments, and it arises from the interplay between chemical, mechanical, and electrochemical processes. In this study, some investigation has
Diamond-like carbon (DLC) and graphite-like carbon (GLC) coatings have good prospects for improving the surface properties of engine parts. However, further understanding is needed on the effect of working conditions on tribological behaviors. In this stu
Although several empirical wear formulas have been proposed, theoretical approaches for predicting surface topography evolution during sliding wear are limited. In this study, we propose a novel wear-prediction method, wherein the energy-based Arrhenius e
Although grease can effectively lubricate machines, lubrication failure may occur under high speed and heavy load conditions. In this study, Mn3O4/graphene nanocomposites (Mn3O4#G) were synthetized using a hydrothermal method as lubricant additives. The l
In this study, water soluble CuO nanostructures having nanobelt, nanorod, or spindle morphologies were synthesized using aqueous solutions of Cu(NO3)2·3H2O and NaOH by adjusting the type of surface modifier and reaction temperature. The effect of morpholo
The aim of this study is to fabricate the nanocomposite with low friction and high wear resistance using binary solid lubricant particles. The microstructure and tribological performance of the nanocomposite are evaluated, and the composition and film thi