论文部分内容阅读
设计由向列相液晶材料/左手材料/右手材料(LC—LHM—R)构成的三层结构界面系统,使用衰减全反射(ATR)技术,研究液晶层的温度以及厚度对三层介质表面电磁波的影响,有助于理解表面等离子激元(SPPs)激发的物理机制。基于电磁场的波动理论,以P偏振为例数值分析表面电磁波的存在区域和表面等离子激元的激发位置,并通过数值模拟的方法研究液晶温度的变化对ATR光谱吸收峰的影响规律。液晶材料组成的参量对该界面表面电磁波的影响非常显著,随着液晶温度的升高SPPs色散偏振曲线向高频方向移动,界面处ATR光谱的反射极小值随着液晶层温度的增大而变小,但其对应的频率位置无明显变化;随着液晶层厚度的减小,界面处ATR光谱中的反射极小值也下降。在不改变模型结构的前提下,可以通过液晶层温度和厚度来调控三层界面表面SPPs,利用这些特性,可为表面电磁波传感器件的设计提供一定的指导意义。
The three-layer structure interface system consisting of nematic liquid crystal material / left-hand material / right-hand material (LC-LHM-R) is designed and the influence of temperature and thickness of the liquid crystal layer on three- , Helps to understand the physical mechanism of surface plasmon excitation (SPPs). Based on the wave theory of electromagnetic field, P-polarization is used as an example to analyze the existence of surface electromagnetic wave and the excitation position of surface plasmon polaritons. The influence of the change of liquid crystal temperature on the absorption peak of ATR spectra is studied by numerical simulation. The influence of the liquid crystal material parameters on the surface electromagnetic wave is very significant. With the increase of the liquid crystal temperature, the SPPs dispersion polarization curve shifts to the high frequency direction. The reflection minimum of the ATR spectrum at the interface increases with the increase of the liquid crystal layer temperature But its corresponding frequency position has no obvious change. With the reduction of the thickness of the liquid crystal layer, the minimum value of ATR reflection in the interface also decreases. Without changing the structure of the model, the three-layer interfacial surface SPPs can be controlled by the temperature and thickness of the liquid crystal layer. Using these characteristics, it can provide some guidance for the design of the surface electromagnetic wave sensing device.