Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtrop

来源 :森林生态系统(英文版) | 被引量 : 0次 | 上传用户:obzz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Background: Aboveground biomass (AGB) is a fundamental indicator of forest ecosystem productivity and health and hence plays an essential role in evaluating forest carbon reserves and supporting the development of targeted forest management plans.Methods: Here, we proposed a random forest/co-kriging framework that integrates the strengths of machine learning and geostatistical approaches to improve the mapping accuracies of AGB in northern Guangdong Province of China. We used Landsat time-series observations, Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data, and National Forest Inventory (NFI) plot measurements, to generate the forest AGB maps at three time points (1992, 2002 and 2010) showing the spatio-temporal dynamics of AGB in the subtropical forests in Guangdong, China.Results: The proposed model was capable of mapping forest AGB using spectral, textural, topographical variables and the radar backscatter coefficients in an effective and reliable manner. The root mean square error of the plot-level AGB validation was between 15.62 and 53.78 t·ha-1, the mean absolute error ranged from 6.54 to 32.32 t·ha-1,the bias ranged from - 2.14 to 1.07 t·ha- 1, and the relative improvement over the random forest algorithm was between 3.8% and 17.7%. The largest coefficient of determination (0.81) and the smallest mean absolute error (6.54 t·ha-1) were observed in the 1992 AGB map. The spectral saturation effect was minimized by adding the PALSAR data to the modeling variable set in 2010. By adding elevation as a covariable, the co-kriging outperformed the ordinary kriging method for the prediction of the AGB residuals, because co-kriging resulted in better interpolation results in the valleys and plains of the study area.Conclusions: Validation of the three AGB maps with an independent dataset indicated that the random forest/co-kriging performed best for AGB prediction, followed by random forest coupled with ordinary kriging (random forest/ordinary kriging), and the random forest model. The proposed random forest/co-kriging framework provides an accurate and reliable method for AGB mapping in subtropical forest regions with complex topography. The resulting AGB maps are suitable for the targeted development of forest management actions to promote carbon sequestration and sustainable forest management in the context of climate change.
其他文献
  本文简述了粮食供应与需求的现状,详细介绍了大豆、玉米、稻谷、小麦等作物生产中的肥料问题及培肥土壤对创高产的重要性。结果表明:中国粮食生产中的肥料问题,不是化肥数量
  本文阐述了河南心连心化肥公司对化肥市场的基本认识,主要包括:1.尿素行业的未来将是一个供应增长较快,需求增长趋缓的过程。2.从企业竞争发展到产品链竞争。3.产业布局转移
  农村人口养老目前主要是家庭、个人积累、自然资源如耕地、山林等以及社会和国家救济等多种屏障,80年代中国人口由于计划生育、医疗水平的提高、经济的快速发展以及迁移等
会议
Background: Many fire-dependent forests have experienced significant declines in species, structural, and functional diversity. These changes are attributed in
Background: Metabolic scaling theory (MST) is still in debate because observed allometric exponents often deviate from MST predictions, and can change significa
  孝顺长辈是中华民族的传统美德,在祖国几千年的历史长河中,孝顺是一朵朵亮丽的浪花,浇灌了中华民族的兴盛和昌隆,孝顺的美谈好事层出不穷,数不胜数。远的不说,单说现代的许世友
会议
  前言老龄化问题,已成为21世纪世界性的重大社会问题。中国也不例外。截止2006年6月1日,中国60岁以上的老年人口已有14657万人,占总人口的11.3%,其中高龄老人占总老人数的10.7%,
会议
  改革开放以来,玉环老龄事业蓬勃发展,全县所有村居建有老年协会和老年体育协会,老年人入会率达95%,以农渔民为主。全县老年人口为5.4万,占人口总数的13.6%,分布在11个镇乡,
会议
  余姚市老年人口14.05万,其中农村老年人11.26万。22个乡镇(街道)中有6个是山区乡镇,山区老年人21813人,其中空巢老人为8186人。越来越多的山区劳动力涌入城市,意味着越来越多
会议
  丽水市缙云县是一个革命老区县,面积1503平方公里,辖24个乡镇和仙都农管处,642个行政村。目前,全县共有老年人口61355人,占全县总人口的13.91%。其中农村老年人人数占全县
会议