论文部分内容阅读
《普物》、《理论力学》中讲解刚体的一般运动可以看成是平动和转动的合成运动时,常用圆轮在直线上的无滑滚动为例来说明,因而,往往需要定性地画出旋轮线(摆线)。 例:一 均匀圆盘在水平面上沿一直线作无滑滚动,质心速度的大小为ν_c,求圆盘上任意点M的运动方程。 解:设M点到质心距离为R,取M点与水平直线相切点M_0坐标原点,建立直角坐标系M_0xy如图(一)。
The general movement of “rigid body” and “theoretical mechanics” to explain the rigid body can be regarded as a translational motion and a rotational synthesis motion, and the commonly used round wheel is illustrated as a non-slip rolling motion on a straight line. Therefore, it is often necessary to draw qualitatively Roto line (cycloid). Example: A uniform disk in the horizontal plane along a straight line for non-slip rolling, the size of the centroid velocity ν_c, find any point on the disc motion equation M. Solution: Let M point to the center of mass distance R, take M points and horizontal straight line tangent point M_0 coordinate origin, the establishment of rectangular coordinate system M_0xy Figure (a).