论文部分内容阅读
以往的研究表明材料硬度与键合性质之间有密切的联系,但材料硬度和晶体体弹模量(B)、剪切模量(G)之间的联系不存在一一对应关系。基于密度泛函理论,在广义梯度近似的计算条件下得到了多种典型晶体材料的结构参数和弹性模量参数,将参数代入imunek A.理论小组的理论硬度计算模型可获得晶体的理论硬度值。通过分析晶体的硬度值与体弹模量(B)、剪切模量(G)之间的关系,认为“难压缩”并不等同于“高硬度”;通过对晶体键密度和键布居等成键电子结构信息的分析,改进了imunek理论小组硬度计算模型中一个参数的获取方法,使计算结果更具合理性;通过定性分析认为拥有强的共价键和三维立体空间结构是晶体具有高硬度的典型特征,为今后新型超硬材料的理论研究和实验合成提供重要参考。
Previous studies have shown that there is a close relationship between material hardness and bonding properties, but there is no one-to-one correspondence between material hardness and crystal bulk modulus (B) and shear modulus (G). Based on the density functional theory, the structural parameters and elastic modulus parameters of a variety of typical crystal materials are obtained under the condition of generalized gradient approximation. The parameters can be substituted into imunek A. Theoretical calculation model of the crystal group Theoretical hardness value. By analyzing the relation between the hardness value and the bulk modulus (B) and shear modulus (G), it is considered that “hard compression” is not equivalent to “high hardness” And the key population and other electronic structure information into the key analysis to improve the imkk theory team to obtain a parameter of the hardness calculation method to make the calculation results more reasonable; through qualitative analysis that has a strong covalent bond and three-dimensional The three-dimensional structure of the crystal is a typical feature of high hardness of the crystal, providing an important reference for theoretical research and experimental synthesis of new superhard materials in the future.