论文部分内容阅读
This paper presents a differential successive approximation register analog-to-digital converter(SAR ADC) with a novel time-domain comparator design for wireless sensor networks.The prototype chip has been implemented in the UMC 0.18-μm 1P6M CMOS process.The proposed ADC achieves a peak ENOB of 7.98 at an input frequency of 39.7 kHz and sampling rate of 180 kHz.With the Nyquist input frequency,68.49-dB SFDR,7.97-ENOB is achieved.A simple quadrate layout is adopted to ease the routing complexity of the common-centroid symmetry layout.The ADC maintains a maximum differential nonlinearity of less than 0.08 LSB and integral nonlinearity less than 0.34 LSB by this type of layout.
This paper presents a differential time-domain comparator-analog-to-digital converter (SAR ADC) with a novel time-domain comparator design for wireless sensor networks. The prototype chip has been implemented in the UMC 0.18-μm 1P6M CMOS process. The proposed ADC achieves a peak ENOB of 7.98 at an input frequency of 39.7 kHz and sampling rate of 180 kHz. Since the Nyquist input frequency, 68.49-dB SFDR, 7.97-ENOB is achieved. A simple quadrate layout is adopted to ease the routing complexity of the common-centroid symmetry layout. The ADC maintains a maximum differential nonlinearity of less than 0.08 LSB and integral nonlinearity less than 0.34 LSB by this type of layout.