论文部分内容阅读
基于单指条栅接地N型场效应晶体管(GGNMOS)在静电放电(ESD)时的物理级建模方法,仿真分析了版图参数和工艺参数对器件ESD鲁棒性的影响。提出了一种可提高器件ESD保护性能的优化设计,即硅化扩散工艺下带有N阱的多指条GGNMOS结构。对单指条器件模型进行修正,得到的多指条模型能预估不同工艺条件下所需的N阱长度,以满足开启电压Vt1小于热击穿电压Vt2的设计规则。由仿真结果可知,对于一个0.35μm工艺下的10指条GGNMOS,通过减小栅极长度(L)、提高衬底掺杂浓度(N_(BC))和漏极掺杂浓度(N_E),以及从修正模型中得到合适的N阱长度,均可以增强器件的ESD鲁棒性。
Based on the physical modeling method of GGNMOS during electrostatic discharge (ESD), the influence of layout parameters and process parameters on the ESD robustness of the device was simulated. An optimized design to improve the ESD protection performance of the device is proposed, that is, a multi-finger GGNMOS structure with N-well under silicided diffusion process. The single-finger device model is modified. The multi-finger model can predict the required N-well length under different process conditions to meet the design rule that the turn-on voltage Vt1 is less than the thermal breakdown voltage Vt2. From the simulation results, it can be seen that for a 10-finger GGNMOS with a 0.35μm process, the substrate doping concentration (N_ (BC)) and the drain doping concentration (N_E) are increased by decreasing the gate length (L) Appropriate N-well length can be obtained from the modified model, which can enhance the ESD robustness of the device.