论文部分内容阅读
基于遥感影像的城市土地利用/土地覆盖分类与变化检测在土地利用调查和更新中具有重要意义。基于武汉市高分辨率航空和卫星遥感影像以及对应的武汉市土地覆盖GIS矢量数据,提出了一种新颖的卷积神经元网络,应用于城市土地覆盖分类和变化检测。首先,采用一种用于分类的全空洞卷积神经元网络(fully atrous convolutional neural network,FACNN),它能够顾及GIS矢量数据中地物的不同尺度和不同勾绘精细程度。然后,在分类的基础上,利用前期已有的GIS数据进行像素级和对象级的变化检