论文部分内容阅读
An iterative learning control algorithm based on shifted Legendre orthogonal polynomials is proposed to address the terminal control problem of linear time-varying systems. First, the method parameterizes a linear time-varying system by using shifted Legendre polynomials approximation. Then, an approximated model for the linear time-varying system is deduced by employing the orthogonality relations and boundary values of shifted Legendre polynomials. Based on the model, the shifted Legendre polynomials coefficients of control function are iteratively adjusted by an optimal iterative learning law derived. The algorithm presented can avoid solving the state transfer matrix of linear time-varying systems. Simulation results illustrate the effectiveness of the proposed method.
An iterative learning control algorithm based on shifted Legendre orthogonal polynomials is proposed to address the terminal control problem of linear time-varying systems. First, the method parameterizes a linear time-varying system by using shifted Legendre polynomials approximation. based on the model, the shifted Legendre polynomials coefficients of control function are iteratively adjusted by an optimal iterative learning law. The algorithm presented is avoid solving the state transfer matrix of linear time-varying systems. Simulation results illustrate the effectiveness of the proposed method.