一种可在胸外按压期间进行室颤节律辨识的新算法

来源 :生物医学工程学杂志 | 被引量 : 0次 | 上传用户:xulele2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在心肺复苏期间,由于胸外按压对心电(ECG)信号产生了机械干扰,无法可靠地辨识心电节律。而中断胸外按压会减小复苏成功的可能性,所以本文研究开发了一个新的滤波算法——增强最小均方(eLMS)算法,可以在无需硬件参考信号支持的情况下,成功滤除胸外按压干扰,达到在不间断胸外按压的情况下正确辨识室颤(VF)节律和正常窦性(SR)节律。该滤波算法仅用受按压干扰的心电(cECG)信号实现滤波,无需其它参考信号。通过在不同信噪比的情况下混合ECG信号和按压干扰信号来验证该算法,并且与其它已经成熟的算法比较。验证结果表明在不同信噪比情况下,eLMS方法的辨识结果均优于其他方法。进一步研究表明,仅用cECG信号就可以很好地辨识心电节律。本算法的成功研发降低了体外除颤仪的研发成本,提高了心电节律辨识的准确性以及复苏成功的可能性。 During cardiopulmonary resuscitation, the cardiogram can not be reliably identified due to mechanical interference with the ECG signal caused by chest compressions. The interruption of chest compressions will reduce the possibility of successful resuscitation. Therefore, this paper developed a new filtering algorithm - enhanced least mean square (eLMS) algorithm, which can successfully filter the chest without hardware reference signal support External press interference to achieve the correct identification of ventricular fibrillation (VF) rhythm and normal sinus rhythm (rhythm) without interruption of chest compressions. This filtering algorithm uses only cECG signals that are subject to press interference to filter without the need for additional reference signals. The algorithm is validated by mixing ECG signals and pressing jamming signals at different signal-to-noise ratios and compared to other algorithms that are already well established. The verification results show that the eLMS method has better identification results than other methods under different SNRs. Further studies have shown that the ECG rhythm can be well identified using only cECG signals. The successful development of this algorithm reduces the R & D cost of the external defibrillator, improves the accuracy of ECG rhythm identification and the possibility of successful resuscitation.
其他文献
期刊
期刊
期刊
期刊
从我国水电厂计算机监控系统的现状出发,结合监控技术发展趋势,提出了大中型水电厂的现地单元、电站以及梯级调度的计算机监控系统的功能要求。 Based on the current situati
K-L变换是均方误差准则意义下的最佳交换,是心电地图数据压缩的重要方法.但K-L变换的常规算法计算量大,目前又无快速算法,实现困难.本文采用人工神经网络算法来实现K-L变换,并将其应用于心电
【背景】居民营养与健康状况是反映一个国家或地区经济与社会发展、卫生保健水平和人口素质的重要内容,也是评价城乡居民收入水平、生活质量和健康改善的客观指标。但我国于19
期刊
[目的] 微阵列数据是指由基因芯片获得的基因表达数据。对基因表达数据的分析,其重要任务之一是筛选差异表达基因,即通过比较正常和疾病状态下基因转录及表达的差异,研究疾病的
期刊