论文部分内容阅读
提出输入层具有一定隶属度的模糊小脑模型神经网络(FuzzyCMAC),它比小脑模型CMAC(CerebelarModelArticulationControler)能更真实地描述客观世界.给出n维FuzzyCMAC算法,仿真结果表明FuzyCMAC比小脑模型CMAC具有如下优点:学习收敛速度快得多,可以学习模糊规则.FuzyCMAC比CMAC优越,使CMAC成为FuzzyCMAC的特例.
The fuzzy CMAC neural network (FuzzyCMAC) with a certain degree of membership is proposed, which can describe the objective world more faithfully than the cerebellar model CMAC (Cerebelar Model Modeling Controller). The n-dimensional FuzzyCMAC algorithm is given. The simulation results show that FuzyCMAC has the following advantages over the cerebellar model CMAC: learning convergence is much faster and fuzzy rules can be learned. FuzyCMAC is superior to CMAC, making CMAC a special case of FuzzyCMAC.