论文部分内容阅读
Co-delivery of chemical drugs and therapeutic genes for synergistic therapy provides a promising strategy to treat devastating diseases. However, the real-time coordination patterns between chemical drugs and therapeutic genes remain poorly understood. Herein, the complexes of doxorubicin/graphene oxidepolyethyleneimine/p53 plasmid(Dox/GO-PEI/p53) were fabricated and employed to investigate the synergistic manner between Dox and p53 in the inhibition of He La cell growth. GO was conjugated with PEI to form the GO-PEI backbone as the delivery vector. The GO backbone provided surfaces with a high specific area to load Dox via the π-π stacking interaction, and was able to release Dox significantly faster at pH 5.0 than at pH 7.0, while the positively charged PEI section of GO-PEI could condense plasmids into GO-PEI/DNA nanoparticles via the electrostatic interaction. The nanoparticles efficiently mediated the transfection of DNA in He La cells, with lower cytotoxicity compared to PEI/DNA nanoparticles. Furthermore, the complexes of Dox/GO-PEI/p53 released Dox and expressed p53 gene in a sequential manner,and showed successive inhibition of the in vitro growth of He La cells. This type of drug/GO-PEI/DNA complex can be employed as a platform to investigate the coordination pattern between chemical drugs and therapeutic genes for tumor therapy.
Co-delivery of chemical drugs and therapeutic genes for synergistic therapy provides a promising strategy to treat devastating diseases. However, the real-time coordination patterns between chemical drugs and therapeutic genes remain poorly understood. Herein, the complexes of doxorubicin / graphene oxidepolyethyleneimine / p53 plasmid (Dox / GO-PEI / p53) were fabricated and employed to investigate the synergistic manner between Dox and p53 in the inhibition of He La cell growth. GO was conjugated with PEI to form the GO-PEI backbone as the delivery vector. GO backbone provided surfaces with a high specific area to load Dox via the π-π stacking interaction, and was able to release Dox significantly faster at pH 5.0 than at pH 7.0, while the positively charged PEI section of GO-PEI could condense plasmids into GO-PEI / DNA nanoparticles via the electrostatic interaction. The nano-mediated transfection of DNA in He La cells, with lower cytotoxicity compared to PEI / DN A nanoparticles. Furthermore, the complexes of Dox / GO-PEI / p53 released Dox and expressed p53 gene in a sequential manner, and showed successive inhibition of the in vitro growth of He La cells. This type of drug / GO-PEI / DNA complex can be employed as a platform to investigate the coordination pattern between chemical drugs and therapeutic genes for tumor therapy.