论文部分内容阅读
数学思维能力是学生数学素质的重要表现,因为应用数学思维去解决实际问题是数学能力的具体体现,所以学会用数学的思维方法去解决实际问题是学习数学的最终目标。在初中数学的教学过程中,我们一定要重视数学基本思维方法的教学,以培养学生的数学思维能力。
各种有效的数学思维方法都不是孤立的,而是相互渗透的。因此,我在这里把数学思维方法分为几类,只是为了从几个侧面说明培养学生数学思维的方法,使学生在思维上获得较全面的训练。
一、培养学生的逻辑思维能力
培养学生的逻辑思维能力要做到以下几点:
首先,除了在几何课上应着重培养逻辑思维能力外,在各年级的数学课上也应该加以重视。任何学习都不是一蹴而就的,培养学生的逻辑思维能力应该由中小学数学课程共同承担。在代数中,计算本身就是推理,计算法则、运算性质都是进行计算的根据,教师要让学生知道每一步运算都是有根有据的,逐步培养学生严密的逻辑思维能力。
其次,要重视基本逻辑方法的介绍。如果教师完全不重视基本逻辑方法的介绍,而一味地在解题过程中培养学生的逻辑思维,必定事倍功半。在数学教学的过程中教师适当地介绍一些必要的逻辑方法,并在解题的过程中有意识地训练学生运用这些方法,让学生在审题的时候用“执因索果”(综合法)、“执果索因”(分析法)或者把二者结合起来思考问题(综合分析法)去寻找论证推理的逻辑思路,才是培养学生逻辑思维能力的有效措施。
再次,对逻辑思维需要全面理解。逻辑思维不仅仅是演绎证明,所以在几何教学中我们应当在形成和发展概念、建立并拓广定理、完成定理的证明并实现有关知识的系统化的过程中,培养和发展学生的逻辑思维能力。解题思路的探索,即分析过程对逻辑思维的发展起决定作用,在数学学习中,只有概念明确、算理清晰,并正确进行逻辑推理,才能达到正确、合理的要求。中学阶段几乎涉及全部的逻辑推证方法,如不完全归纳、分析、综合、數学归纳法等,在教学中我们应重视这方面的训练。
最后,题海战术并不是培养学生逻辑思维能力的有效措施。反复做一些基本题对学生掌握解题格式、解题方法和思考方法上也许能起到熟能生巧的作用,但对发展学生的逻辑思维能力则显得相对迟缓。多做技巧性较高的难题也往往是劳而无功的,甚至会使学生对数学学习望而生畏。适量地做一些例题是有必要的,但主要应当多做一些对知识方法的运用比较灵活、综合性比较强而又有一定代表性的题目。
总之,学生要一方面透彻地理解和掌握基本知识和基本方法,掌握它们之间的基本关系、基本变型和基本运用,另一方面要善于分析各种具体问题的特点,恰当地运用知识、方法和解题经验。不断地加强这两方面的素养,是发展学生逻辑思维的有效途径。
二、培养学生的转化思维能力
把新的数学问题转化为用已知的数学知识方法能够解决的问题,这种转化思维是一种很重要的数学思维方法。我们在教学过程中,应注意挖掘隐含在数学内容当中的数学思想和方法,力求让学生掌握数学最本质的属性,形成良好的思维品质。而使学生理解和掌握这种重要的思想方法,需要教师有意识地渗透、引导和培养,给他们“搭桥”,帮助他们形成一定的认识,从而不断地培养学生的转化思维能力。
三、培养学生的数形结合思维能力
数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微。”在形的问题难以解决时发挥数的功能,在数的问题遇到困难时画出与它相关的图形,都会给问题的解决带来新思路。在教学中教师注意对学生进行数形结合的培养,让学生养成良好的思维习惯,这有助于提高学生解决问题的能力,如数轴、二元一次方程的应用题、抛物线的图像、线段的加减、角的加减、三角函数、解直角三角形等都是通过数形的有机结合引导学生学会分析问题,探求问题的解决方法,循序渐进,不断而有效地培养学生的数形结合思维能力。
四、培养学生的运动思维能力
几何图形不是孤立和静止的,而应看作是不断发展和变化的。从图形的运动中看到变化,从变化中看到联系、区别及特性,这有助于提高学生解决问题的能力。有关线段、射线的定义,角的定义,角的平分线定义,线段垂直平分线的定义,平行线的定义,圆的定义,圆与圆的位置关系,三角函数图像等都有关于运动的问题,教师讲授这些知识可以培养学生的运动思维能力。
五、培养学生的求同与求异思维能力
在初中数学教材中,比如解方程与解不等式可以通过列表格的方式引导学生比较它们的异同点,分式的加减可以从分数的加减入手通过比较理解它们的异同点。我们把相异的知识点放在一起加以比较,让学生分析其不同点,并分析其原因,可以培养学生的求同思维与求异思维能力。如在讲一元一次不等式和它的解法时我们可以将其与一元一次方程和解法列出表格,让学生比较它们的异同点,再加以总结,这能够逐渐培养学生的求同思维与求异思维能力。
六、培养学生的联想思维能力
在课堂教学中,我们可以从一个知识点展开,纵向联想出与它有关的知识结构体系,形成一个有机的整体知识网络,横向联想出有关的相近的知识结构体系;也可以从多个知识点综合联想出新一层知识,多角度、多方位培养学生的联想思维能力。
在初一几何教学引入线段的和、差、倍、分时,联想数的和、差、倍、分的含义,这样对于新旧知识的联系较为有利,能为学生提供一条解决新问题的思路,在以后遇到新问题时,学生就会主动联想与其有关的知识。在讲“角的大小比较”时,我启发学生回忆上面的方法,由比较线段的大小,以及线段的和、差、倍、分的画法,类比联想出如何比较角的大小,以及角的和、差、倍、分的画法。我利用几何课讲授新课的过程,培养了学生运用类比联想的思维方法,引导学生利用旧知识解决新问题,逐步提高了学生联想的思维能力。
七、培养学生的逆向思维能力
培养学生的逆向思维能力主要通过定义(如:一元一次方程的定义、二元一次方程的定义等)、性质(如:同底数幂相加、幂的乘方等)、定理(如:韦达定理、角平分线定理及其逆定理、线段垂直平分线定理及其逆定理等)、法则等的逆运用教学。
八、培养学生的发散思维能力
在数学教学中我们要从“题意发散”、“条件发散”、“解法发散”等训练中培养学生的发散思维能力。
在初一几何中讲授“角的表示方法”时,我分别提出以下四种方法:1.用三个大写字母表示角。2.用一个大写字母表示角。3.用一个希腊字母表示角。4.用一个数字表示角。学生可以根据不同的具体情况选择一种最好的表示方法,从而初步培养了学生的发散思维。
九、培养学生的优化思维能力
教师通过不同角度、不同思维方法对一题进行多解,对一个知识点进行不同层次、不同思维方法的理解、论证、消化,可以优化学生解决问题的思维途径与方法,培养学生优化思维的能力。
总之,在数学教学中教师要有意识地加强数学思维方法的教学,培养学生的数学思维能力,提高学生的数学素质,这样才能更好地提高学生解决问题的能力,增强学生的素质,培养新世纪合格的国家建设人才。
各种有效的数学思维方法都不是孤立的,而是相互渗透的。因此,我在这里把数学思维方法分为几类,只是为了从几个侧面说明培养学生数学思维的方法,使学生在思维上获得较全面的训练。
一、培养学生的逻辑思维能力
培养学生的逻辑思维能力要做到以下几点:
首先,除了在几何课上应着重培养逻辑思维能力外,在各年级的数学课上也应该加以重视。任何学习都不是一蹴而就的,培养学生的逻辑思维能力应该由中小学数学课程共同承担。在代数中,计算本身就是推理,计算法则、运算性质都是进行计算的根据,教师要让学生知道每一步运算都是有根有据的,逐步培养学生严密的逻辑思维能力。
其次,要重视基本逻辑方法的介绍。如果教师完全不重视基本逻辑方法的介绍,而一味地在解题过程中培养学生的逻辑思维,必定事倍功半。在数学教学的过程中教师适当地介绍一些必要的逻辑方法,并在解题的过程中有意识地训练学生运用这些方法,让学生在审题的时候用“执因索果”(综合法)、“执果索因”(分析法)或者把二者结合起来思考问题(综合分析法)去寻找论证推理的逻辑思路,才是培养学生逻辑思维能力的有效措施。
再次,对逻辑思维需要全面理解。逻辑思维不仅仅是演绎证明,所以在几何教学中我们应当在形成和发展概念、建立并拓广定理、完成定理的证明并实现有关知识的系统化的过程中,培养和发展学生的逻辑思维能力。解题思路的探索,即分析过程对逻辑思维的发展起决定作用,在数学学习中,只有概念明确、算理清晰,并正确进行逻辑推理,才能达到正确、合理的要求。中学阶段几乎涉及全部的逻辑推证方法,如不完全归纳、分析、综合、數学归纳法等,在教学中我们应重视这方面的训练。
最后,题海战术并不是培养学生逻辑思维能力的有效措施。反复做一些基本题对学生掌握解题格式、解题方法和思考方法上也许能起到熟能生巧的作用,但对发展学生的逻辑思维能力则显得相对迟缓。多做技巧性较高的难题也往往是劳而无功的,甚至会使学生对数学学习望而生畏。适量地做一些例题是有必要的,但主要应当多做一些对知识方法的运用比较灵活、综合性比较强而又有一定代表性的题目。
总之,学生要一方面透彻地理解和掌握基本知识和基本方法,掌握它们之间的基本关系、基本变型和基本运用,另一方面要善于分析各种具体问题的特点,恰当地运用知识、方法和解题经验。不断地加强这两方面的素养,是发展学生逻辑思维的有效途径。
二、培养学生的转化思维能力
把新的数学问题转化为用已知的数学知识方法能够解决的问题,这种转化思维是一种很重要的数学思维方法。我们在教学过程中,应注意挖掘隐含在数学内容当中的数学思想和方法,力求让学生掌握数学最本质的属性,形成良好的思维品质。而使学生理解和掌握这种重要的思想方法,需要教师有意识地渗透、引导和培养,给他们“搭桥”,帮助他们形成一定的认识,从而不断地培养学生的转化思维能力。
三、培养学生的数形结合思维能力
数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微。”在形的问题难以解决时发挥数的功能,在数的问题遇到困难时画出与它相关的图形,都会给问题的解决带来新思路。在教学中教师注意对学生进行数形结合的培养,让学生养成良好的思维习惯,这有助于提高学生解决问题的能力,如数轴、二元一次方程的应用题、抛物线的图像、线段的加减、角的加减、三角函数、解直角三角形等都是通过数形的有机结合引导学生学会分析问题,探求问题的解决方法,循序渐进,不断而有效地培养学生的数形结合思维能力。
四、培养学生的运动思维能力
几何图形不是孤立和静止的,而应看作是不断发展和变化的。从图形的运动中看到变化,从变化中看到联系、区别及特性,这有助于提高学生解决问题的能力。有关线段、射线的定义,角的定义,角的平分线定义,线段垂直平分线的定义,平行线的定义,圆的定义,圆与圆的位置关系,三角函数图像等都有关于运动的问题,教师讲授这些知识可以培养学生的运动思维能力。
五、培养学生的求同与求异思维能力
在初中数学教材中,比如解方程与解不等式可以通过列表格的方式引导学生比较它们的异同点,分式的加减可以从分数的加减入手通过比较理解它们的异同点。我们把相异的知识点放在一起加以比较,让学生分析其不同点,并分析其原因,可以培养学生的求同思维与求异思维能力。如在讲一元一次不等式和它的解法时我们可以将其与一元一次方程和解法列出表格,让学生比较它们的异同点,再加以总结,这能够逐渐培养学生的求同思维与求异思维能力。
六、培养学生的联想思维能力
在课堂教学中,我们可以从一个知识点展开,纵向联想出与它有关的知识结构体系,形成一个有机的整体知识网络,横向联想出有关的相近的知识结构体系;也可以从多个知识点综合联想出新一层知识,多角度、多方位培养学生的联想思维能力。
在初一几何教学引入线段的和、差、倍、分时,联想数的和、差、倍、分的含义,这样对于新旧知识的联系较为有利,能为学生提供一条解决新问题的思路,在以后遇到新问题时,学生就会主动联想与其有关的知识。在讲“角的大小比较”时,我启发学生回忆上面的方法,由比较线段的大小,以及线段的和、差、倍、分的画法,类比联想出如何比较角的大小,以及角的和、差、倍、分的画法。我利用几何课讲授新课的过程,培养了学生运用类比联想的思维方法,引导学生利用旧知识解决新问题,逐步提高了学生联想的思维能力。
七、培养学生的逆向思维能力
培养学生的逆向思维能力主要通过定义(如:一元一次方程的定义、二元一次方程的定义等)、性质(如:同底数幂相加、幂的乘方等)、定理(如:韦达定理、角平分线定理及其逆定理、线段垂直平分线定理及其逆定理等)、法则等的逆运用教学。
八、培养学生的发散思维能力
在数学教学中我们要从“题意发散”、“条件发散”、“解法发散”等训练中培养学生的发散思维能力。
在初一几何中讲授“角的表示方法”时,我分别提出以下四种方法:1.用三个大写字母表示角。2.用一个大写字母表示角。3.用一个希腊字母表示角。4.用一个数字表示角。学生可以根据不同的具体情况选择一种最好的表示方法,从而初步培养了学生的发散思维。
九、培养学生的优化思维能力
教师通过不同角度、不同思维方法对一题进行多解,对一个知识点进行不同层次、不同思维方法的理解、论证、消化,可以优化学生解决问题的思维途径与方法,培养学生优化思维的能力。
总之,在数学教学中教师要有意识地加强数学思维方法的教学,培养学生的数学思维能力,提高学生的数学素质,这样才能更好地提高学生解决问题的能力,增强学生的素质,培养新世纪合格的国家建设人才。