三角形退化成一条线段后的两个结论

来源 :中学数学杂志(初中版) | 被引量 : 0次 | 上传用户:silversandcgliu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  如图1,在△OAB中, 有OA+OB>AB.现将三角形退化成一条线段,即点O在边AB上,则会得到两个方面的结论:其一,当点O在AB上时,OA+OB有最小值,最小值为AB的长,这一结论为求两条线段和的最小值提供了依据;其二,当点O在AB上时,线段AB的值最大,最大值为OA+OB,这一结论为求线段的最大值提供了依据.现举两例:
  例1 (2008年甘肃兰州中考题)如图2,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF的最小值是()
其他文献
数学是研究数量关系与空间形式的科学,立体几何是高中数学重要组成部分,是培养空间想象能力最有力的工具,新的高中数学课程标准强调培养和发展学生的空间想象能力、几何直观能力,培养学生观察、操作、试验、探索、合情推理能力,倡导学生积极主动地探究学习,使学生经历从特殊到一般,从具体到抽象的过程,新课程标准中立体几何的基本理念、知识结构、内容安排的调整,督促教师要努力探索新的立体几何教学策略,促进学生空间想像
教材是许多教育专家研究成果,课本中的每道习题都是经过慎重思考,精心打磨而成的结晶,有其潜在的价值,它对渗透数学思想和方法及其深入理解、思考和处理问题有广泛的辐射功能和较强的示范作用,下面是笔者对一道习题的思考.  原题 苏科版八年级(上册)45页第9题:  如图1,A、B在直线L的同侧,点B′是点B关于L的对称点,AB′交L于点P.(1)AB′与AP+BP相等吗?为什么?(2)在L上取一点Q,并连
引例 若以一点为端点的射线有若干条时,应如何确定以该点为顶点的角有多少个?如图1,按下面的各步找出以点O为顶点的角的个数:  解析将射线OA绕点O按逆时针方向旋转所得到的角有4个,它们是∠AOB,∠AOC,∠AOD,∠AOE;将射线OB绕点O逆时针方向旋转所得到的角3个,他们是∠BOC,∠BOD,∠BOE;同样的方法可得到另两组角是∠COD,∠COE和∠DOE,所以,图中所有的角的个数是:4+3+