外研版Book3 Module5 Great people and great inventions of ancient China 教学设计

来源 :课程教育研究·新教师教学 | 被引量 : 0次 | 上传用户:zz9506018
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【中圖分类号】G634.41 【文献标识码】B 【文章编号】2095-3089(2017)11-0289-02
  教材分析:本课介绍了中国古代的三位伟大的哲学家及他们的伟大思想,让学生阅读中学习哲学,树立正确的社会观,人生观,为他们日后走向社会打下坚实的社会基础,本课重点介绍了三位哲学家的生平经历,体现了他们一直坚持自己的思想和信念,修身养性,从不低头放弃。通过阅读,学生学习了新的词汇和句型,并了解了用英语怎样去描述三位伟大的哲学家及他们的思想,也提高了他们的阅读水平,还学习坚持不懈的精神。
  Teaching goals
  1 Target goals
  A Important words phrases: principle position stress resign influential belief..
  B important patterns: (1)Ancient China was a place where states were often at war with each other.(2)Confucius is the philosopher whose influence has been the greatest.(3)Mencius believed that the reason why man is different from animals is that man is good.
  2 Ability goals
  A Discuss the questions about the passage.
  B Teach the students to imitate and retell.
  Teaching important and difficult points
  1 Discuss the answers to the questions
  2 Teach the students to accept and show opinions
  Teaching methods
  1 Fast reading:
  2 Dealing with comprehension questions.
  3 Listening and retelling.
  Teaching procedures and ways
  Step 1 Revision
  First, the teacher shows the questions about the text and the target language on the screen and asks the students to discuss them.Then ask some of them to say something about the three philosophers and their teachings, at last, get them to practice showing agreements or disagreements and giving reasons.For example: I think so.I don’t think so.I agree.I don’t agree.That’s correct.You’re quite right.That’s exactly my opinion.
  Step 2 Lead-in
  Show some pictures of Confucius, Mencius and Mo Zi.Show some teachings of them on the screen and ask some questions:
  Who are they?
  What are Confucius’ teaching thoughts?
  What are Mencius’ teaching thoughts?
  What are Mo Zi’s teaching thoughts?
  Step 3 Pre-reading
  T: This reading passage is about the three great philosophers.We will learn more about the three philosophers.
  First look at the words in Activity 1 and then ask them to do exercises.
  Step 4 Fast-reading
  Read the text quickly to get the main idea and find proper words and phrases in the passage to match these definitions
  A few minutes later, ask the students to read out the definitions and the words they find and correct them.
  Step 5 Careful- reading
  Show some questions and ask the students to judge them.
  Give the students a few minutes to complete the table together with their desk mates.Then choose one or three to find detailed information to fill in.
  Birth The family Achievements Teachings
  Confucius
  Mencius
  Mo Zi
  Step 6 post-reading
  Ask the students to listen to the tape and make sure of the pronunciation of the text , then read the text to understand it better.
  Step 7 Homework
  1 Read the text again and retell it.
  2 Finish the reading on workbook.
其他文献
【摘要】当下,“互联网+”开启了创新创业的热潮,创客教育迅猛发展,学科教学中融入创客教育必将大势所趋。本文梳理了创客、创客文化、创客教育的相关概念,并在初中科学教学中实施创客教育进行了实践初探,以期搭建创客教育平台,丰富学生创客行为培养学生的创新创造能力。  【关键词】创客教育;初中科学;创新创造  【中图分类号】G434 【文献标识码】B 【文章编号】2095-3089(2017)11-0210
【摘要】对于小学生来说,学习兴趣是学生学习的内驱动力,兴趣的产生对学生的引导往往比老师的枯燥的讲解更有效果。本文就如何在小学数学中开展趣味化教学提出了几点建议,分别在创设教学情境、设计教学内容以及教学方法方面作了细致的阐述,并结合教学实例进行分析,以期能够提高课堂效率。  【关键词】小学数学;趣味化教学;策略  【中图分类号】G623.5 【文献标识码】B 【文章编号】2095-3089(2017
该文用逆乃奎斯特阵列法(INA)设计某机的侧向控制系统。设计针对高度H=10000米、马赫数M=0.9的飞行状态进行。数字仿真的结果说明所得到的侧向控制器同样适用于H=10000米、马赫数M=1.5的飞行状态;最后用鲁棒
教师创设情境,根据教学目标、教学内容和学生情况设计不同层次,引导学生结合所学知识进行全方位、多角度的深入思考,教师在课堂中选择恰当的提问时机,使情境背景下心智技能和动作技能二者相互配合,发挥情景教学的基本功能,了解学习状态,使学生理解并掌握知识,能力得到发展。  一、情境教学设计问题的基本功能  1.深化情境层次  教师提出问题以后,促进学生去做进一步的思考,通过对学生提出的问题,判断学生的理解掌
期刊
【摘要】每当我进行直线方程的两点式的教学时,总有学生要问:“直线方程的两点式,既然用点斜式导出又为什么要写成,而不写成呢?”写成,包涵不是更广泛吗?这不仅引起我认真思考,发现它有很好的教学价值,本文拟谈拙见。  【关键词】直线方程;两点式;思考;教学价值  【中图分类号】G623.2 【文獻标识码】B 【文章编号】2095-3089(2017)11-0288-02
【中图分类号】G633.3 【文献标识码】B 【文章编号】2095-3089(2017)11-0288-02  教学程序:  一、导入  师:上课!  生:老师好!  师:同学们好,请坐!  师:同学们,鲁迅为什么把他的第一本小说集取名叫《呐喊》呢?这也许是同学们想知道的,今天,我们通过学习《呐喊》中的《孔乙已》,通过对“孔乙己”这个人物形象的理解,也许就能找到答案了。(PPT展示课题)。  二、
期刊
北师大版数学突出的特点之一是强调学生整理信息、分析信息、运用信息,在“比的认识”这一课是在学生已经学过了除法的意义、分数的意义以及分数与除法的关系的基础上学习的.