【摘 要】
:
大气压强那么大,生活于其中的你我却没有什么感觉,这是什么原因呢?要解开这个谜,我们还是全面走进大气压强的世界吧.
Atmospheric pressure is so great, you and I living
论文部分内容阅读
大气压强那么大,生活于其中的你我却没有什么感觉,这是什么原因呢?要解开这个谜,我们还是全面走进大气压强的世界吧.
Atmospheric pressure is so great, you and I living in it do not feel anything, what is the reason? To solve this mystery, we still fully into the world of atmospheric pressure.
其他文献
构造法作为一种重要的化归手段,在数学解题中起着重要的作用.它能优化解题途径、显示隐含条件、沟通条件与结论之间的关系.运用构造法解题,能激发学生的发散思维训练,使学生
分式方程的增根与无解是学习分式方程中常见的两个重要概念,两者既有区别,又有密切的联系,须慎重不能等同.当把分式方程转化为整式方程的变形过程中,使分母的值为零的这种限
解答含特殊角30°、45°、60°的直角三角形应用题时,我们习惯利用直角三角形中的边角之间的函数关系进行,其实利用本文中介绍的两个结论非常有效、非常迅捷.
When answerin
数形结合是数学解题的一种重要思维方法,巧妙地利用形帮数来解题,不仅可以提高解题速度,从而达到简捷解题的目的,而且有利于提高我们的解题技能,提升思维的灵活性、敏捷性和
目的:观察加味增液承气汤对阴虚燥热型糖尿病性便秘患者的临床疗效。 方法:将符合阴虚燥热型糖尿病性便秘64例患者随机分为2组,治疗组32例予加味增液承气汤,对照组32例予莫沙
在竞赛中,以几何图形为背景的解答题难度较大,但若能充分利用已知条件,善于从不同角度思考,就能找到解题“路径”,实现一题多解.
根据以往的教学经验,九年级数学相似这一章,由于牵涉的概念较多,知识点跨度相对较大,因此学生学习这一章节时,可能有点力不从心,那么作为教师在数学活动中就一定要做好导航引
几何与函数的综合问题中,构思巧妙,涉及知识面较广,跳跃度较大,沟通了代数与几何之间的密切联系,有利于考查学生运用基础知识和基本技能进行综合分析、计算、逻辑思维能力,有
当三角形的顶点在网格的格点上,给出证明两个三角形相似的通法和特法.
When the vertices of the triangles are on the grid lattice points, we give the general and spe
网格中直尺作图问题注重知识之间的联系,尤其以近5年天津市中考题为代表,意境新颖,思维含量高,涉及知识点多,有一定难度.文中抱着知其然知其所以然的态度既有作法又有证明,以