论文部分内容阅读
通过在克隆选择过程中引入聚类竞争机制,提出了一种免疫聚类竞争的克隆选择算法.采用了抗体聚类、竞争扩增、克隆删除、体细胞高频变异、抗体循环补充等思想及相关算子操作,增强聚类族中的优秀个体获得克隆扩增实现亲和力成熟的机会,提高抗体群分布的多样性,在深度搜索和广度寻优之间取得了平衡.实验仿真及应用结果表明:该算法具有可靠的全局收敛性及较快的收敛速度,将其应用于冶金过程目标优化中取得较好的效果.