论文部分内容阅读
氦等离子体处理纳米二氧化硅溶胶涂覆T300碳纤维能构造出特定空间结构形态的纳米涂覆层.扫描电子显微镜照片显示,经氦等离子体处理后纳米二氧化硅溶胶涂覆T300碳纤维的纳米涂覆层在纤维表面分布均匀,起到填补纤维表面微观缺陷的功能.X射线光电子能谱及傅里叶变换红外光谱显示,纤维表面被引入了活性官能团,纳米二氧化硅涂覆层与碳纤维间有表面激活反应.形成纳米界面结构的T300碳纤维表面与纳米二氧化硅涂覆层间的相互作用符合艾琳方程,利用热激活体积可以对其相互作用进行定量分析.拉伸试验表明,屈服塑性变形导致纳米界面结构热激活,纳米微粒阻碍碳纤维表面大分子链形貌变化的热激活体积是纳米界面结构性能的重要表征.
Nano-silica sol coating with helium plasma T300 carbon fiber can be constructed to form a specific spatial structure of the nano-coating.Scanning electron micrographs show that after the helium plasma treatment of nano-silica sol coated T300 carbon fiber nano-coating The coating distributes evenly on the fiber surface and plays a role of filling the microscopic defects on the fiber surface.X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy show that the fiber surface is introduced with active functional groups, the coating layer of nano-silica and the carbon fiber There is a surface activation reaction.The interaction between T300 carbon fiber surface and nano-silica coating forming the nanostructured interface conforms to the Irene equation and the thermal activation volume can be used to quantitatively analyze the interaction between the T300 carbon fiber surface and the nanosilica coating.The tensile test shows that the yield plasticity The deformation leads to thermal activation of the nanostructured interfacial structure. The heat-activated volume that the nanoparticles impede the change of the macromolecular chains on the surface of the carbon fiber is an important characterization of the nanostructured interfacial structure.