论文部分内容阅读
传统农业研究方法的研究结果通常具有地域性 ,周期长 ,且投入大 ,解决这一问题较为理想的方法是利用作物的生长模型预测作物生长发育的过程。一个品种×施氮量的双因素试验在云南省农科院试验站 (北纬 2 5° ,东经 10 9° ,海拔 190 0m)进行 ,试验有 5个施氮水平 :分别是10 0 ,145,185(N3) ,2 30 ,和 2 70kg/ha ;3个参试种分别为 :Across 876 3、PozaRica 876 3和普通玉米墨白 1号。为了用CERES玉米生长模型预测栽培管理措施对不同品种生长发育的影响 ,在泰国北部清迈大学农学院的多熟种植中心 (北纬 18°4 7′ ,东经 99°57′ ,海拔 30 0m)进行品种×播种期的双因素试验 ,试验目的是确定品种的遗传参数。参试种为Across 876 3(QPM ) ,PozaRica 876 3(QPM )和Suwan 1,3个播种期分别是 1994年 12月 2 0日、 1995年 1月 5日和1995年 1月 2 0日。采用模型中遗传参数计算器 (GENCAL)计算出这 3个品种的遗传参数 ;在本研究中采用泰国获得的玉米品种的遗传参数对云南试验中两个品种的生长发育过程进行预测 ,结果表明CERES玉米模型可以较准确地预测不同种生长发育
The results of traditional agricultural research methods are usually regional, long-period, and large investment. A better solution to this problem is to use crop growth models to predict crop growth and development. A two-factor experiment with one cultivar × application rate of nitrogen was conducted at the experimental station of Yunnan Academy of Agricultural Sciences (latitude 25 °, longitude 109 ° and altitude 190 ° m). Five nitrogen levels were tested: 10 0, 145, 185 N3), 2 30, and 2 70 kg / ha. The three tested species were Across 876 3, PozaRica 876 3 and common corn Mo Bai 1 respectively. In order to predict the effect of cultivation management practices on the growth and development of different cultivars with the CERES corn growth model, multi-cropping centers (18 ° 47 ’north latitude, 99 ° 57’ east longitude and 30 ° elevation) of the Agricultural College of Chiang Mai University in northern Thailand Variety × sowing two-factor test, the purpose of the experiment is to determine the genetic parameters of varieties. Species Across 876 3 (QPM), PozaRica 876 3 (QPM) and Suwan 1 and 3 sowing dates are December 20, 1994, January 5, 1995 and January 20, 1995, respectively. The genetic parameters of these three cultivars were calculated using GENCAL model. The genetic parameters of maize cultivars obtained from Thailand were used to predict the growth and development of two cultivars in Yunnan. The results showed that CERES Corn model can more accurately predict different kinds of growth and development