初中数学实验教学及其实施步骤研究

来源 :新课程导学 | 被引量 : 0次 | 上传用户:abcwangyong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在数学教学中,数学实验教学是种创新教学方式,符合新课标教学要求。其特点有:①以新课标教学理念为教学指导思想,突显学生主体性,发挥教师指导、引导作用。②在数学实验教学中,引导学生通过自主观察实验、假设猜测、推理验证、分析综合、讨论交流等实践活动,获取知识,提高数学素养与综合能力。③在数学实验教学中,学生活动是主要表现形式。因此,教师既要思考教学内容特点,还 In mathematics teaching, mathematics experiment teaching is a kind of innovative teaching method, which meets the requirements of the new curriculum standard teaching. Its characteristics are: ① with the new curriculum teaching philosophy as the teaching guiding ideology, highlighting the students’ subjectivity, teachers play a guiding role. ② In mathematics experiment teaching, guide students through independent observation experiments, hypothetical guesswork, reasoning and verification, analysis and synthesis, discussion and exchange of practical activities, access to knowledge, improve the quality of mathematics and comprehensive ability. ③ In mathematics experiment teaching, student activity is the main form of expression. Therefore, teachers should not only think about the characteristics of teaching content, but also
其他文献
非线性泛函分析是现代分析数学的一个重要分支,因其能很好的解释自然界中的各种各样的自然现象受到了越来越多的数学工作者的关注.其中,非线性边值问题来源于应用数学和物理的多
本文对当前房屋建筑施工安全及其生产管理的现状进行了分析,提出了加强房屋建筑施工安全管理的措施,以保证房屋建筑工程施工的进度和质量。通过分析得出建筑企业建立实施现代化
期刊
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
本文主要讨论余代数的扩张,并根据代数、余代数的平凡扩张给出一类是BiFrobenius代数但不是Hopf代数的例子。 在第一节,我们介绍了代数扩张,代数平凡扩张,Frobenius代数,coFrob
本文主要内容分两部分;H-连通空间的可乘性和Brouwer度不变性的简化证明. 菜用点集拓扑学的方法证明了两个满足第一可数公理的Hausdr off,的H-连通空间的乘积,当其中一个空间
本文通过对浙江树人大学在校大学生及部分毕业生采用问卷调查的方式,了解目前民办高校大学生的职业生涯规划现状,发现其存在职业生涯规划意识淡薄、了解不足、没有规划等问题
在可积系统的研究中,寻找可积系统的可积耦合及其哈密顿结构是两个非常重要的研究课题。本文围绕这两个主题分别研究了可积系统、分数阶可积系统的可积耦合以及二次型恒等式、
哈雷特·阿班(Hallett E.Abend)是美国大报《纽约时报》20世纪30年代的重要驻华记者,也是美国新闻界塑造和传播近代中国知识和形象的关键人物之一。通过考察阿班在中国十五年
本文研究经典形式背景及模糊形式背景下概念格的对象扩展问题.论文主要分为五个部分。 第一部分介绍了概念格产生背景、研究内容和进展以及研究主要采用的方法;第二部分研究
分支定界算法足一种较为常用的全局优化算法,近年来一直是最优化领域的研究热点.但这类算法迭代次数多、运行时间长、求解效率低,很难适合大规模的优化问题.为了克服这些不足,本文