论文部分内容阅读
目的探测1996-2014年南宁市乡镇/街道办事处尺度上,艾滋病病毒(HIV)感染者的时空聚集性,为南宁市HIV的防控提供科学参考。方法从乡镇/街道办事处尺度上,对1996-2014年南宁市HIV新发报告率用泊松模型的时空扫描统计量进行小尺度时空聚集性探测,并用地理信息系统实现探测结果的可视化。结果 1996-2014年,南宁市HIV感染共存在5个有统计学意义的高发性时空聚集区。其中一级聚集区为宾阳县宾州镇,始于1999年,止于2002年[对数似然比(LLR)=119.02,相对危险度(RR)=7.08,P<0.001];次级聚集区分别包括:1)以良庆区那马镇为中心,共28个乡镇/街道,聚集于2003-2008年的次级聚集区Ⅰ(LLR=63.04,RR=1.35,P<0.001);2)以横县甘棠镇为中心,共14个乡镇,聚集于2013-2014年的次级聚集区Ⅱ(LLR=51.65,RR=1.71,P<0.001);3)以马山县周鹿镇为中心,共47个乡镇,聚集于2010-2014年的次级聚集区Ⅲ(LLR=43.82,RR=1.21,P<0.001);4)以横县横州镇为中心,共2个乡镇,聚集于2000-2007年的次级聚集区Ⅳ(LLR=35.18,RR=1.75,P<0.001)。结论时空扫描统计量可以较好地揭示南宁HIV感染的时空聚集性,相关部门应该加强对HIV时空高发聚集区的防控工作。
Objective To explore the spatiotemporal aggregation of HIV-infected persons on the scale of township / sub-district offices in Nanning from 1996 to 2014 and to provide a scientific reference for the prevention and control of HIV in Nanning. Methods From the township / subdistrict offices scale, the small-scale spatiotemporal clustering detection was conducted on the spatiotemporal covariance of Poisson model from 1996 to 2014 in Nanning. The geographic information system was used to visualize the detection results. Results From 1996 to 2014, there were five statistically significant high-spatiotemporal aggregation areas for HIV infection in Nanning City. The first-level zone of aggregation was Binzhou County in Binyang County, beginning in 1999 and ending in 2002 [LLR = 119.02, relative risk (RR) = 7.08, P <0.001] The gathering areas include: 1) A total of 28 towns / streets centered on Na Ma Town in Liangqing District gathered in the secondary gathering area Ⅰ (LLR = 63.04, RR = 1.35, P <0.001) from 2003 to 2008; 2) Focusing on the town of Kantang in Heng County, a total of 14 villages and towns were clustered in the secondary gathering area II (LLR = 51.65, RR = 1.71, P <0.001) from 2013 to 2014; 3) The town is the center of a total of 47 villages and towns gathered in 2010-2014 sub-gathering area Ⅲ (LLR = 43.82, RR = 1.21, P <0.001); 4) to Heng County Hengzhen as a center, a total of 2 towns , Clustered in secondary agglomeration IV (LLR = 35.18, RR = 1.75, P <0.001) from 2000-2007. Conclusion The spatio-temporal scanning statistics can better reveal the spatiotemporal aggregation of HIV infection in Nanning, and the relevant departments should strengthen the prevention and control of HIV-infected areas with high spatial and temporal distribution.