温度刺激对大脑警觉度的影响研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:iqwin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
警觉度(Vigilance)是指人在执行任务时,对于重复性、非唤醒性刺激能够长时间进行清醒处理并维持的能力,其中包括注意力的集中程度和对紧急情况的快速反应能力以及大脑的觉醒程度。在日常生活和工作的众多领域中,比如汽车驾驶、航空航天、医学诊疗、军事作战等,都需要作业者能够长时间保持高度警觉状态,一旦警觉度水平降低且未及时处理,则很可能导致任务失败甚至造成人员伤亡、财产损失等严重事故。因此,如何在短时间内快速有效调控大脑警觉度已成为目前国内外科研人员的研究热点问题。探索出一种可以快速有效调控大脑警觉度且无痛无创、安全性强、便于操作的方法具有十分重要的意义和实用价值。
  基于此,本研究提出了一种基于温度刺激调控大脑警觉度的方法。首先设计了精神运动警觉度测试(Psychomotor Vigilance Test,PVT)任务来构建大脑警觉度下降模型,然后利用一种前额温度刺激的方式来对被试者大脑警觉度的下降进行调控,同时实验全程记录被试者的行为学(反应时间)和生理学(脑电)数据,并在实验前后填写主观量表,最后通过对主观量表得分、行为学特征以及脑电信号特征进行分析来探究温度刺激调控大脑警觉度的可行性及其神经机制。
  在建模部分,主观量表得分及行为学分析结果显示,实验后被试者主观量表得分显著高于实验前,PVT任务平均反应时间显著大于初始状态,这表明PVT任务成功构建了大脑警觉度下降模型。
  在调控部分,施加温度刺激之后,行为学分析结果显示,PVT任务平均反应时间显著减小。脑电信号分析结果显示,在频域方面,平均功率、θ频段相对功率、低频段与高频段功率比值均减小,α频段和β频段的相对功率均增大,其中α/β功率比值显著减小,α频段相对功率显著增大;在时频域事件相关谱扰动方面,额区和枕区的θ频段、低α频段、低β频段能量均显著减小,额区的高β频段能量显著增大;在非线性特征Lempel-Ziv复杂度方面,脑电信号产生新模式的速率加快,复杂度增大;在脑网络方面,平均节点度、全局效率、平均聚类系数均增大,平均最短路径长度减小,大脑活动的核心区域由枕区转移至前额区,脑网络的连接性增强,信息传递效率提高。
  以上研究结果初步表明温度刺激调控大脑警觉度具有一定的作用效果和可行性,这为以后温度刺激实际应用于大脑警觉度的调控提供了理论与实验基础。
其他文献
近年来,磁感应断层成像(Magnetic Induction Tomography,MIT)作为电阻抗成像(Electrical Impedance Tomography,EIT)的重要分支,获得了快速的发展。MIT技术是基于涡流检测原理,通过检测成像体周围磁场的变化来重建成像体内部的电导率分布。该成像方式具有无创、非接触、磁场穿透强等特点,相比于MRI、CT等技术还具有成本低、检测方式灵活等优势
学位
磁探测电阻抗成像(Magnetic Detection Electrical Impedance Tomography,MDEIT),是通过向成像体注入激励电流,利用检测器测量成像体外部磁感应强度分布,并使用成像算法来重建成像体内部电导率分布图像的一种新兴医学成像技术。MDEIT技术由电阻抗成像(electrical impedance tomography,EIT)技术发展而来,继承了其便携,可
学位
主动脉是人体最为重要的血管,而因主动脉夹层导致的心血管疾病死亡率很高,在诊断与治疗时主治医生需要获取准确的主动脉外部三维模型及内部血液动力学信息,针对主动脉夹层诊疗过程中CT图像序列,如何准确地从中分割提取出主动脉区域是一个亟待解决的问题。本文设计了一种基于超像素和形状特征结合的三维分割方法,通过高效准确的分割主动脉区域并实现3D可视化显示,为医生进行诊断以及治疗提供有效信息;并对构建主动脉3D模
荧光分子层析成像技术(Fluorescence molecular tomography,FMT)作为最有前景的成像技术之一,在分子成像领域逐渐突显出来。由于FMT成像的物理本质是基于扩散光子的成像,其相邻的投影图相似度高且测量的光学信号不完整,使得FMT重建具有高度的病态性,限制着该技术的临床应用。因此,FMT重建算法的研究一直是研究人员重点研究方向之一。传统代数迭代方法(Algebraic R
在现代社会中,极低频率低强度电磁场(Extremely low frequency electromagnetic fields,ELF-EMFs)对于人们身体健康的威胁越来越严重,对人类神经系统功能和认知行为等存在潜在的风险。同时ELF-EMFs也与阿尔兹海默症以及其他相关神经认知疾病有着紧密的联系,海马区Schaffer-CA1突触可塑性LTP是研究学习和记忆的经典模型,目前国内外针对LTP模
学位
基于感应耦合传输技术的定点观测平台是海洋长期原位实时观测中最重要、最可靠、最稳定的手段,随着海洋生物信息监测技术的发展,对采集数据的传输性能提出了更高的要求,其中,海水信道对电信号传输的影响至关重要。电流在海水中传输具有折射与反射概率低,路径损耗小,传输速度快,电噪声水平低等优点。但海水介质的内源物理特性和水域空间无限大的特性,使水下电流传输产生多径效应和频率选择性衰落等问题,限制了电流信号长距离
荧光分子成像技术(Fluorescence Molecular Imaging,FMI)是精确定位肿瘤的有效工具。该技术通过对肿瘤组织进行荧光标记并实时显示肿瘤区域荧光图像,从而帮助医生准确辨别健康组织与肿瘤组织。荧光内窥镜成像原理与基于FMI技术相同,利用荧光探针标记肿瘤组织,帮助医生检出微小病灶、精确定位肿瘤、标记肿瘤边界、完全切除肿瘤。但是,由于荧光信号弱,造成荧光内窥镜的荧光图像质量较差。
现代社会中,能够产生低频电磁场(Low frequency electromagnetic fields,LF-EMFs)的设备被广泛使用。长期暴露于LF-EMFs环境存在着影响人类的记忆和认知功能的风险;可同时LF-EMFs刺激也是治疗阿尔兹海默病等神经退行性疾病的一种有效手段。无论将其当做外界影响因素或是临床治疗手段,其作用机制都亟待被探索。  突触可塑性是一种与学习和记忆紧密关联的细胞分子机
学位
血流是表征组织健康和功能的临床指标之一。因此,区域内血流图像对于诊断和监测与组织血流异常相关的疾病具有重要的意义。近几年,近红外扩散相关光谱技术(Diffusion Correlation Spectroscopy,DCS)凭借无创性,对血流变化的高敏感性,高穿透深度,实时成像潜力,以及床边监测适用性等优势在血流检测中受到了越来越多的关注。  典型DCS系统由长相干近红外激光器、多模光纤、单模光纤
学位
航天特因环境(Aerospace special environment, ASE)是指具有高真空、强电磁辐射、微重力等条件的太空环境与航天器自身空间狭小、昼夜交替频繁、噪声大等因素所造成的航天复合环境。研究发现,长时期处于太空环境中,宇航员会发生如肌肉萎缩、骨质疏松、身体失衡等运动功能障碍,但目前已知的对抗措施包括跑步机锻炼、平衡饮食、多穴位电针刺激、药物治疗等都存在各自的优缺点,且基本属于外周