论文部分内容阅读
微生物可以利用信号分子借助群体感应(Quorum sensing,QS)系统调控其生理生态功能,以及种群、群落间的相互作用等。其中,革兰氏阴性菌QS的主要信号分子N-酰基高丝氨酸内酯(N-acyl homoserine lactones,AHLs)是目前研究最为广泛的信号分子之一。实现信号分子的原位检测以及相关细菌的生态位表征可为研究微生物的相互作用及生态生理提供一个有效的研究手段。为此,利用基因工程和分子生物学技术,通过将组成型表达元件、响应AHL的报告元件和AHL调节蛋白元件等优化组合,构建了双荧光标记的质粒pUCGMA,并实现既能响应AHL又能特异性的表征宿主菌,具体结果如下:
⑴构建了不同终止子优化的双荧光标记质粒pUCGMAT1-4、 pUCGMA2T1-4。该质粒中含有三部分主要基本元件:PnptⅡ: gfp,组成型启动子新霉素磷酸转移酶启动子启动绿色荧光蛋白的表达,用于指示宿主细胞;ahlR基因,丁香假单胞菌丁香致病菌B728a(Pseudomonas syringae pv.syringae(Pss) B728a)中编码AHL调节蛋白的基因,此基因的存在可使不产AHL的宿主菌在AHL合成酶基因和报告基因存在下对外源AHL作出响应;PahlI:mcherry,受AHL合成酶启动子ahlI调控表达樱桃红色荧光蛋白,用于监测AHL;最后在PahlI:mcherry两端先后加入4个串联终止子序列以降低表达背景,形成质粒pUCGMAT1-4、 pUCGMA2T1-4。
⑵质粒以不产AHL的大肠杆菌(Escherichia coli)为宿主,以100 nmol/L的AHL诱导,在不同时间观察E.coli(pUCGMA2T1-4)、E.coli(pUCGMAT1-4)、E.coli(pUCGMA)全细胞生物传感器对AHL的响应时间。实验表明,全细胞传感器E.coli(pUCGMA2T1-4)对AHL响应最明显,在诱导第6-96 h内都可不受AHL影响表达绿色荧光和明显高于背景的红色,并且菌液在第6h出现肉眼可见樱桃红色,而E.coli(pUCGMAT1-4)、E.coli(pUCGMA)的菌液在整个诱导时间内均无颜色变化,且受诱导前后红色荧光强度差别不大。不同剂量AHL诱导E.coli(pUCGMA2T1-4)实验表明,当AHL诱导浓度≥50 nmol/L时均可表达明显高于明亮红色荧光,在50 nmol/L以下荧光强度没有明显变化,表明该传感器对AHL的检测限为50 nmol/L,并且在10000 nmol/L高浓度下仍有很好的响应规律。E.coli(pUCGMA2T1-4)红色荧光强度在各诱导浓度下都随诱导时间的增加而增强,9h达到最大并趋于稳定,在诱导6h时,只要诱导浓度≥50 nmol/L的菌液均出现肉眼可见的樱桃红色。
⑶质粒pUCGMA2T1-4以产AHL的野生型假单胞菌TA125为宿主时,传感器Pseudomonas PhTA125(pUCGMA2T1-4)在荧光显微镜下有明显可见的绿色荧光和红色荧光。表明此种构建不仅在典型的实验室菌株中能够有效表达和行使功能,还能在野生型菌中原位检测AHL和指示环境中的宿主细胞。