基于小波变换和数学形态学的图像边缘特征提取

来源 :武汉大学 | 被引量 : 5次 | 上传用户:jshajhb1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在瞬态信号与图像的分析中,突变点往往是重要的特征之一,它们常常位于重要结构的边缘部分。边缘精度、抗噪性、实时性和稳定性是边缘检测的主要性能指标。传统的微分算子边缘检测,如Roberts、Sobel、Laplacian等算子,实时性较好,但抗干扰性差。后来出现的Canny算子,性能虽优于其他的微分算子,但定位方面欠佳。 这样就出现了两种边缘提取方法,一种是从小波理论入手,构造适当的小波,通过模极大值的方法提取其边缘,这种方法可以取得较好的效果,但对选择小波有较为严格的要求。另一种方法是从灰度形态学的角度,构造结构单元,对图像进行腐蚀或膨胀,突出其边缘信息,而后得到其边缘。这种方法的优点是边缘精度高,但细节边缘信息提取又与结构单元选取有着密不可分的联系。 本文在这两种方法的基础上,先对小波模极大值方法提出了一种简化的算法,然后对形态学边缘检测算子加以改进,提出了一种修正的边缘检测算子,最后本文将这两种方法结合,从小波变换理论的角度入手,将图像进行多尺度分解,在各个尺度下对图像各个高频的细节进行加权处理,然后从灰度形态学的角度出发,提出了一种基于小波变换与数学形态学的图像边缘提取算法。并给出了仿真实验和结果分析,实验结果表明,在边缘精度、强弱边缘提取和噪音抑制方面,本文所提方法是有效的。
其他文献
学位
独立分量分析(Independent Component Analysis,简称ICA)是近年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从传感器收集到的混合信号中分离出相互独立的
学位