论文部分内容阅读
光波导是光信号在光子芯片中的传播通道,它是由中心折射率较高的纤芯区域和外围折射率较低的包层区域共同构成的结构,由于全反射效应光信号会被约束在波导的导波区域进行定向传输。作为光子芯片的最基本元件,减小光波导的传输损耗、不同尺寸光波导之间的耦合损耗和光波导与其他元件之间的耦合损耗可以提高光子芯片的可靠性,集成度,所以高品质光波导的制备一直是集成光学中的一个重要方向。 利用飞秒激光直写技术可以在透明材料内部诱导折射率改变进而制备光波导。与传统的平面二维波导相比,飞秒激光可以通过聚焦后与材料的非线性效应将波导制备在透明基底材料内部,所以飞秒激光直写技术在光波导制备方面有着加工精确、集成度高、三维能力强等优势。在微流体、量子调控、光互联等方面,飞秒激光直写光波导有着广泛的应用前景。 飞秒激光直写光波导主要有两种方法,分别是纤芯直写和包层直写。纤芯直写是调节飞秒激光脉冲参数,使聚焦在透明材料内部的飞秒脉冲诱导焦斑区域折射率正致变,这样激光直写区域就构成了光波导纤芯区域。包层直写是调节飞秒激光脉冲参数,使聚焦在透明材料内部的飞秒脉冲诱导焦斑区域折射率负致变,这样激光直写区域构成光波导的包层区域,通过多焦点技术或多次直写可以形成直写包层对纤芯的包围。包层直写模式由于导波区域没有受到较强的直写激光作用,波导可以保留材料本身的特殊性质,所以在制备频率转换器件、小型波导激光、电光调制器件等方面包层直写模式更为合适。 但目前常规的两种包层结构都有各自明显的不足。双线包层直写加工方便但由于导波区域不封闭及应力不均匀它在很多透明材料中仅能实现一种偏振光的传输。大量增加直写次数或采用多焦点技术进行包层直写可以构成封闭区域,但由于其对加工条件要求苛刻、耗时长、尺寸难以控制等缺点并没有得到广泛的应用。 针对以上两种包层直写波导的不足,本论文中的实验利用对飞秒激光脉冲的空间整形技术研究了一种新型的矩形凹陷包层波导结构并在以下材料中完成了这种矩形压缩包层光波导的制备。 1.ZBLAN玻璃(ZrF4-BaF2-LaF3-AlF3-NaF)中矩形凹陷包层光波导的制备。使用空间整型后的飞秒激光在ZBLAN玻璃中制备了6μm×6μm与12μm×12μm两种尺寸的光波导,实现了红光(632.8nm He-Ne激光)的单模传输。 2.铌酸锂晶体(LiNbO3)中矩形凹陷包层光波导的制备。使用空间整型后的飞秒激光在铌酸锂晶体(X切、10×5×3mm3)内部加工了矩形凹陷包层光波导。我们分别加工了两种尺寸(13×13μm,18×18μm)的纵向双线光波导、横向双线光波导、由横向双线和纵向双线共同组合而成的矩形凹陷包层光波导,并且观察到纵向双线光波导仅支持TE模式导波,横向双线光波导仅支持TM模式导波,矩形凹陷包层光波导既支持TE模式也支持TM模式导波。矩形凹陷包层光波导在易于加工、模场尺寸易于调节的前提下第一次实现了封闭的包层结构及TE与TM两种偏振光的传输。 3.偏硼酸钡晶体(BBO)中矩形凹陷包层光波导的制备。使用空间整形后的飞秒激光在偏硼酸钡晶体(10×2×1mm3,其中通光方向沿10mm方向,设为x方向,y-z面切割方向为θ=19.37°,φ=90°)内部加工了尺寸为(20μm×20μm)的矩形凹陷包层光波导。基于之前发现的矩形凹陷包层光波导的偏振无依赖特性,它可以同时实现相对于波导o光和e光的导波,满足第一类相位匹配(o+o→e)产生二次谐波的要求。通过对波导二次谐波的研究发现,在1560nm连续激光的激励下,波导实现了1560→780nm二次谐波的产生。当连续基频光的输入功率在100mW时,二次谐波的输出功率为1.4μW,其归一化转换效率与先前研究基于飞秒激光加工相同尺度的硼酸盐包层波导基本一致。