具有尖孤子解的新可积模型以及孤子方程解的代数几何构造

来源 :郑州大学 | 被引量 : 2次 | 上传用户:yangliang0510
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要分为如下两个部分:其一,借助于Lenard递推序列,推导出分别与一个4×4、两个3×3矩阵谱问题相联系的孤子方程族,对于某些方程族或者方程,我们给出了它们的广义Hamilton结构和无穷守恒律;其二,我们给出了相应孤子方程的精确解。其中第二章,我们给出了相应CH型方程的尖孤子解;第四、五章基于三角曲线理论及代数几何知识,我们构造出了相应孤子方程的代数几何解。  第二章中,我们通过引入负幂流,得到三类CH型方程。其中两个具有N-peakon形式解。我们借助广义函数δ,给出了N-peakon解所满足的动力系统。  孤子方程的代数几何解揭示解的内部结构,描述了非线性现象的拟周期行为。本文第三章主要介绍黎曼面以及Theta函数的相关知识,其中的概念,引理以及定理可以更好地帮助我们理解三角曲线。第四章和第五章,我们采取一套很系统的方法去构造三角曲线,再通过引入适当的Baker-Akhiezer函数,亚纯函数及椭圆变量,从而将孤子方程分解为可解的Dubrovin-type常微分方程组。进一步,根据亚纯函数及Baker-Akhiezer函数零点和极点的性质,我们定义第二类和第三类Abel微分,结合Riemann定理及Riemann-Roch定理,得到了亚纯函数以及Baker-Akhiezer函数的黎曼theta函数表示。最后,我们再结合亚纯函数以及Baker-Akhiezer函数的渐近性质,给出了孤子方程族的代数几何解。
其他文献
图论是数学的一个分支.它以图为研究对象.通常通过研究一个图存在什么样的子图以及这个图具有什么样的性质来了解这个图的结构.本文主要研究图中点不交的星图,小阶完全图,圈以
RNA聚合酶的主要功能是利用DNA来制造RNA。在转录过程中,RNA聚合酶使用DNA作为模板并使用腺嘌呤脱氧核苷酸(A)和胸腺嘧啶脱氧核苷酸(T),胞嘧啶脱氧核苷酸(C)、尿嘧啶脱氧核苷酸
本文的主要内容是基于代数曲线理论来研究孤子方程的Riemann theta函数表示形式的拟周期解,分别研究了Hu族,耦合修正Korteweg-de Vries族,Vakhnenko方程和一族新的耦合非线性演
由于地域差异和时间变化的存在,产生了空间面板数据,这类数据能同时反映时间和空间两个方向上的变化规律,比仅考虑地域差异的截面数据和只关注时间变化的时间序列数据适用性
旅行商问题(TSP)与车辆路径问题(VRP)自提出以来,许多学者进行了大量的理论研究和实验分析,取得了非常显著的进展,已经成为了运筹学和组合优化问题领域的热点研究问题。求解他们的算
CPI是国际上最为流行的观察通货膨胀的指标,维持CPI的稳定也是社会经济的目标之一。提前预测CPI,不仅对我国经济的发展趋势具有一定的指向性,而且对通货膨胀起到预警作用。本