快速可调谐激光光源的多点采样光纤光栅解调

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:KenBlove
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传感技术是指从自然信源的信号中提取所需的信息,进行识别、分析、处理的一种信息科学技术。传感系统通常由信号源,敏感元件,信号接收器和信号处理单元组成。其中,敏感元件采用光纤布拉格光栅(FBG),传感信号为光信号的传感系统被称为FBG传感系统。FBG由于具有体积小精度高、耐高温耐腐蚀、无源性抗电磁干扰、传输距离远、便于复用和分布式应用等优点,在传感领域有着广泛的应用。可调谐激光光源光纤光栅解调技术是FBG传感系统信号解调技术的一种。本文基于调制光栅Y分支(MG-Y)可调谐激光光源设计了一种快速可调谐激光光源多点采样光纤光栅解调技术方案。主要内容包括:分析了MG-Y激光器的光源特性和技术参数,分析了光纤布拉格光栅的传感原理,通过改进基于MG-Y激光器的法布里珀罗(F-P)传感系统,构建了可调谐激光光源FBG传感系统;对模式耦合理论、FBG双波长解调算法、FBG Buneman频率估计解调算法,进行了理论分析和应用分析;提出了一种快速可调谐激光光源光多点采样光纤光栅解调算法,并利用Labview软件编写了相关的模拟振动程序,模拟解调程序、振动实验解调程序和加速度实验解调程序;基于使用光谱仪解调的Buneman频率估计解调算法,编写了一种适用于可调谐激光器解调法的解调程序作为解调结果的对比;分析了快速可调谐激光光源FBG解调,数据采集延时影响解调精度的问题和采样值跳变影响解调结果的问题,并针对这两种问题提出了一种补偿算法消除这些负面影响;提出了一种振动传感方案,一种加速度传感方案和其配套的标定方案,通过实验进行了验证;最后通过仿真和实验证实了该解调算法的理论分析结果,对两种算法进行了对比,并对本文提出的这种算法的未来发展进行了展望。通过改进算法,本文实现了快速可调谐激光光源FBG传感系统的较大范围、稳定、高速、高精度、自适应的多点采样解调。模块化和子程序化的设计使得补偿算法和整个解调程序具备进一步拓展功能的可能和良好的发展前景。单独运行解调模块的解调速度峰值能达到40k Hz以上,延时补偿后中心波长误差控制在1pm以内,具备自适应选取采样值计算的功能,能够完成中心波长偏移范围1nm的解调,并具备更大范围解调改进的空间,同时解决了采样值延时和突变带来的中心波长畸形和跳变的问题。
其他文献
本文研究了一类线性时不变(LTI)系统的模型预测控制(MPC)问题,该LTI系统以涡扇航空发动机为背景。第一,我们基于LTI模型,利用ADMM算法对涡扇航空发动机的MPC问题进行研究。在当前时刻k,我们首先基于LTI模型,借助MPC的基本原理推导出预测方程,其次利用预测方程把MPC问题转化为一个关于控制序列的二次规划(QP)问题,接着引入一个松弛变量将QP问题等价转化为一个带有等式约束的分块的适用
CMOS图像传感器(CMOS image sensor,CIS)因具有低成本,低功耗,集成度高等优点而广泛应用于生产生活中。随着其应用范围不断扩大,在太空,医疗,核能等领域,辐射引起的器件老化备受关注。总剂量效应是一种因电子器件长期受到高能辐射而出现的老化效应,器件的电学参数会随着辐射总剂量的累积而发生改变。随着我国航天航空事业的发展,总剂量效应对CIS性能参数的影响愈发引起人们的重视。4T结构的
横向压力监测在结构健康监测、医疗诊断分析、复合材料性能评估等领域有着重要的意义,近年来受到了研究者们的广泛关注。光纤传感器由于其体积小、灵敏度高及抗电磁干扰等优点被广泛应用于横向压力监测。目前,在横向压力监测领域对光纤布拉格光栅(FBG)传感器研究较为广泛,但由于其对多参数敏感,测量结果容易受到环境因素(如温度)变化的影响。光纤法布里-珀罗(F-P)传感器以其结构简单、灵敏度较高、稳定性较好及温度
微波光子学是结合了微波射频领域与光学领域的交叉学科。随着微波光子学的发展,研究人员尝试着将微波光子学应用于传感领域,称之为微波光子传感,其基本原理是将传感信息通过光信号形式转换成微波信号,通过对微波信号的测量实现传感的目的。微波光子传感能够提高识别速度和精度,更稳定、更易控制,具有良好的可重复测量特性。本文首先介绍了微波光子滤波器的基础理论,通过倾斜光纤光栅的模式耦合理论,分析了倾斜光纤光栅的传输
随着网络的迅速发展,手机等电子设备的逐渐大众化,人们时刻不停的在和外部环境交换数据,由此产生的数据资源呈现爆发式增长。海量的数据资源中虽然蕴藏着诸多信息,但从中获得具有指导意义信息的难度也随之增加了许多。因此如何有效利用这些数据,从中准确、快速地分析提取出符合人们要求的信息成为符合时代要求的研究课题。聚类方法是数据挖掘领域中较为主要的基础之一,已经获得了广泛的研究。但在真实情况中,一般都能在海量数
光纤光栅(Fiber Bragg Grating,FBG)作为一种优质传感元件,具有其耐高温、抗腐蚀性高、抗电磁干扰等特点广泛应用于工业工程中的各个领域。光纤光栅解调技术一直是光纤光栅传感技术体系中的研究重点,特别是动态解调技术更是实际问题所需要的,本文从这一实际需要出发,对光纤光栅动态解调技术进行了相关研究。通过综述光纤光栅传感器及其解调技术的研究现状、光纤光栅的温度和应变传感机理,对常用的解调
脐带缆的分析与设计过程需考虑自重,内流体重力,附件重力与浮力等与设计耦合的固定载荷以及波浪,海流,海风,浮体运动等随机动态环境载荷作用。上述载荷模式的复杂性,环境载荷与结构响应间关系的高度非线性均使脐带缆线型设计周期较为漫长,难以应对对设计效率要求较高的设计任务需求。因此,本文基于深度学习模型,提出了一套脐带缆线型的快速设计方法以提高脐带缆线型设计效率,具体内容如下:首先,本文基于实际工程中常用的
伴随着经济发展和工业规模的不断扩大,种类繁多的气体在工业生产中扮演着愈发重要的角色。这些气体中存在着大量的易燃易爆以及有毒有害气体。危险气体的富集可能会造成火灾、爆炸等巨大的危害事故,然而微量气体的泄漏,尤其是无色无味气体的泄漏往往不易被察觉。选择高灵敏度的气体检测方案在发生泄漏的早期发现问题并判断故障类型,对避免上述危害事故发生具有重要意义。本文重点研究了高灵敏度小型化光纤光声传感器的设计并对气
随着21世纪以来计算机的快速发展,机器学习在岩土工程中的应用尤其是在岩土参数确定方面的应用越来越广泛。目前岩土力学参数的确定方法主要有实验法、反分析法以及经验法三种,但其都存在一定的局限性。由此,本文提出了采用机器学习的方法将土体的基本物理参数与土体本构模型参数建立联系,与实验法相结合正向分析得出土体的本构模型参数。利用训练好的模型,研究人员只需进行简单的室内试验即可得到土体的邓肯-张模型参数以及
倾斜光纤布拉格光栅(Titled Fiber Bragg grating—TFBG)和表面等离子体共振(Surface Plasmon Resonance—SPR)技术相结合是近年发展的新型光纤表面折射率感知技术,具有高灵敏度、实时监测、响应速度快等优点,在生物医学、药品安全、环境监测等领域有着重要应用。作为高折射率灵敏度的TFBG-SPR传感技术,光谱信息的高效分析及准确解调是提升传感系统性能的