弱Hopf代数的结构及其箭图表示

来源 :浙江大学理学院 浙江大学 | 被引量 : 1次 | 上传用户:tangmanzhuo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Our work extensively depends upon the regular monoids, the Clifford monoids, their algebras, the Hopf algebras and the weak Hopf algebras(Lis ). By M. Petrich [74], the class of all Clifford monoids form a variety of inverse monoid. Further, we can say that the class of idempotents of all Clifford monoids form the subvariety of all Clifford monoids. A. H. Clifford in [25] proved the famous structure theorems; Theorem 4.1.3 and Theorem 4.2.1 for the semigroups which Clifford used the name semigroups admitting relative inverses in [25], by virtue of these results Howie first time named such semigroups, the Clifford semigroups in [42]. It has been structured by Clifford in [25] and latter Howie described in [42] that a Clifford semigroup is a strong semilattice of groups. By [74] and [42], if S is a Clifford monoid then S is disjoint union of its maximal subgroups. F. Li introduced the so-called weak Hopf algebra in 1999 (see [55]), latter he defined semilattice graded weak Hopf algebra. He laid its foundation in his latter work, (see [55], [56], [57], [58], [59], [60], [61] and [62]). Moreover, it is known that the regular monoid algebra and the Clifford monoid algebra are the respective examples of the weak Hopf algebra and the semilattice graded weak Hopf algebra. Weak Hopf algebra can be considered as the generalization of Hopf algebra. The set of grouplike elements of the Hopf algebra is group, however the grouplike elements of the weak Hopf algebra is a regular monoid and that of semilattice graded weak Hopf algebra is a Clifford monoid. The Clifford monoid is an inverse semigroup(with 1) whose idempotents lies in its center. Thus a Clifford monoid may also be named as generalized group in the Vagners sense [89] and [90]. We discuss Clifford monoid algebra which is a natural example of the semi- lattice graded weak Hopf algebra. We shed light on the structures of Clifford monoids, its algebras and the structures of Semilattice graded weak Hopf alge- bras using quivers. One of the main objects of this work is to make it possible develop the theory of weak Hopf algebras. Another purpose of the work is to de- velop the structure theory of weak Hopf algebras and of semilattice graded weak Hopf algebras using path coalgebras corresponding to some quivers. One may use the structure theory and the characterization theory of Clifford monoids algebras and of Hopf algebras to achieve this task.
其他文献
一、上海外经贸行业对经营管理人才特殊素质的要求一要有强烈的竞争和开拓意识。在上海对外经济贸易的发展过程中,已经形成一批对外经贸管理人才,但无论从数量和质量上讲,距
本文针对求解半定规划的内点法存在着一些问题,例如它一般要求严格可行初始点,给出了求解线性半定规划的一种同伦算法。首先,利用线性半定规划问题的KKT条件构造了同伦方程,随后
[目的]探讨超氧阴离子对水稻根系生长和生长素分布的影响。[方法]以水稻中花11号为试验材料,分析了DDC(SOD抑制剂)和Tiron(超氧阴离子清除剂)对水稻根系生长、超氧阴离子产生
首先,在前言部分介绍了传统的供应链库存补货模型的相关文献,并总结了文献的特点,大致可归纳为以下四点:(1)、绝大多数供应链模型在静态环境下构建,即需求被假设是均匀或是平稳的
设n,s1,s2是3个正整数,使得s1<s2<n,gcd(n,s1,s2)=1,G(n;s1,s2)是n个结点的步长为s1和s2的双环网,其结点集V=Zn={0,1,2,…,n-1],其边(弧)集为E={I→I+s1(mod n),I→I+s2(mod n)|I∈Zn). 其直
股海搏杀,血雨腥风,赢家毕竟是少数,正可谓是“一将功成万股枯”。也许不是每个小散户都有机会成为投资大师,但学学股神们的成功经验,提升自己的操作水平是可以做到的。沃伦
古诗词的学习是小学语文教学中的一个教学难点,对于小学生来说也有一定的学习难度.新课改以后对古诗的教学模式进行了重大变革,苏教版教材编者根据新课改的要求,创造性地进行
随着科技的高速发展,利用高科技盗取信息的案例越来越多,信息的安全传输显得尤为重要,隐写术便是一种可以将信息隐藏在载体中,借助载体隐蔽传输的技术。由于公开信道视频传输
课堂教学是一门缺憾的艺术。在现代多元化的教学情境下,旧的传统教学模式尚未打破,新的课程理念仍需完善。与其穿着新鞋走老路,不如打破传统,探索新的教学路径。就现阶段深圳公、
《全日制义务教育英语课程标准》要求根据小学生的生理和心理特点以及发展要求,激发学生学习英语的兴趣,培养他们英语学习的积极态度,使他们建立初步的学习英语的自信心,培养