煤层气产业发展规划方法研究

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:zhaochunguang741
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
众所周知,经济评价是分析论证项目的经济合理性、评估风险的大小,为项日提供科学决策的依据。煤层气的经济评价已经相对成熟,本文在对各目标区进行经济评价的基础上进行了煤层气的产业发展规划方法的研究,同时进行初步规划。首先对单一目标区进行规划,对其进行市场预测、投资预测、成本与税费预测及产出预测,通过合理的方法净现值法进行经济评价。根据经济评价的结果,同时综合考虑地质背景、储层因素、资源因素、开发基础因素等方面,对煤层气各目标区进行分级排序。运用分级排序的结果,优选出优先开发的煤层气目标区。在进行整体产业规划时,考虑我国煤层气产业发展实际情况及技术水平,按照等级排序,规划优先开发利用的A级优先开发日标区和B级次优先开发目标区,对其进行需求分析、投资规划、产量预测以及经济效益和社会效益的预测。基于煤层气经济评价的产业规划,能够更客观更系统的从整体对我国煤层气进行规划。随着煤层气产业的积极发展,建立以经济评价为基础的煤层气产业发展规划方法具有重大的学术及实践意义。
其他文献
目的 探讨母亲DM诱发胎儿神经管畸形(NTDs)的组蛋白乙酰化修饰机制.方法 构建高糖处理小鼠神经干细胞(NE?4C)模型、T1DM雌鼠诱发NTDs胎鼠模型及人类母亲高血糖相关NTDs胚胎脑
线性规划问题是数学应用的重要内容之一,其问题本身以及解决问题的方法促进了许多数学分支的发展.这方面的高考试题的设问方式也由最初的求线性目标函数的最值转变为求与其知识相关的问题,试题所提供的背景也越来越新颖,越来越巧妙.其基本思路是画出满足约束条件的点的范围,也就是可行域;研究目标函数的几何意义,找到目标函数最值的位置,求出最值.然而,此类问题的演变,从目标函数的几何意义上作文章和研究“可行域”的变
经济社会的发展和信息全球化时代的快速到来,要求电力体制的改革和经营环境发生根本的变化,目前大部分电力企业所面临的经营环境变化较大,电力企业所承担的角色、传统的经营方式
在《新编高中数学教材》中增加平面和空间向量的学习,通过向量的学习,将使学生对量的数学表达的认识进入一个新的领域,同时学生对平面几何乃至立体几何的定理及有关性质的推导和证明,对解析几何有关问题的理解及应用,三角函数公式及其性质的来源、证明和运用等又达到了质的飞跃.并通过向量的实际应用培养学生空间想象力,思维能力,把实际问题转化为数学模型的能力.  一、利用向量法证明三角形中两个三线共点问题  例1用
为什么我一见强光,比如太阳光,就会打喷嚏?有的时候想打喷嚏打出不来,只要看一看太阳,甚至只要看看天空,就能打出来了。所有人都是这样吗,还是如我朋友所说的——我对阳光过敏? 根据1993年美国的一项研究调查,人类中有18%~35%的个体都有这种现象。这种现象产生的原因还没有最终确定,不过有一些推测性的解释听起来还是比较靠谱的,例如下面这个。  在人类头部分布着的神经中,有一根神经叫做三叉神经。它接收
进入21世纪以来,随着经济全球化和市场竞争的加剧,建筑企业面临着新的挑战,企业之间的竞争已不局限于采购、施工及服务等单个环节的竞争,正发展成为整个提供产品的供应链之间
在平时的解题中常常会遇到一类带条件的分式型最值问题,而这类问题解决难度不大,只要认真仔细推敲,一定会找到许多解法,充分体现了多种数学思想方法.例如:  题目:(第24届2013年“希望杯”高二培训题:第28题)直线3ax-2by-3=0(a>0,b>0)与曲线x2+y2-2x+6y+1=0相交于A、B两点,若AB的长为6,则1a+1b的最小值是  (A)3+22(B)22(C)32(D)3  此题
圆锥曲线的定义反映了圆锥曲线的本质属性,也是建立各自方程的依据.然而在教学中发现,学生往往过多依赖方程而忽略定义在解题中的灵活应用.事实上,圆锥曲线的定义对于很多数学问题具有明显的导向作用,利用定义解题,是解决有关问题的重要策略.以下举例说明圆锥曲线定义在解题中的应用.  一、定义法求动点轨迹方程  例1已知A-7,0,B7,0,C2,-12,椭圆过A,B两点且以C为其一个焦点,求椭圆另一焦点的轨
三角函数这一章,涉及的公式比较多,运算量也不小,在平时的学习中,虽然大部分学生能熟记公式,运算能力也不差,但往往提到三角函数就伤脑筋,总感慨难学.究其原因,无非是看问题不关注细节,分析问题抓不住关键,解决问题不够灵活.  下面结合几个简单例子谈谈学习三角函数需要注意的几个问题.本文所选例题形式都比较简单,但例题毕竟不在于形式多么复杂,内容多么丰富,只要起到示范作用,能说明解题的道理就是最好的.  
“体验式教学”符合当前基础教育改革和课程目标理念.所谓高中数学体验式教学,是指在高中数学教学过程中,根据有关教育学及心理学理论,在教师的指导下,把知识对象化,以获得客观、精确的知识的过程,激发学生的兴趣、好奇心及求知欲,引导学生积极参与、乐于合作交流,对现实世界中蕴含的一些数学模式进行思考和作出判断,达到真正“学数学、做数学”的目的.所以,学体验式教学就是学生和师生共同的体验式数学教学.  一、创