论文部分内容阅读
参与性介质普遍存在于航空航天、能源动力等高新技术领域,例如,再入飞行器的热防护材料、航空发动机的高温陶瓷部件、航天飞机的光学窗口、太阳能集热器和涡轮发动机的隔热防护层等均属于参与性介质。为保证上述设备的安全高效运转,往往需要对其表面热流和内部温度分布进行近实时甚至是实时监测,但绝大多数情况下,由于表面恶劣的换热环境,基于现有的直接测量手段对上述设备边界瞬态热流和内部温度分布进行快速精确测量几乎是不可能的,必须通过间接手段(反演技术)重建得到。目前,边界时变热流和内部温度场的近实时甚至实时重建研究主要集中在纯导热领域,而参与性介质边界时变热流和内部温度分布的重建研究主要为基于传统梯度算法和随机搜索算法的离线方式。因此,亟需发展精确、强鲁棒性参与性介质边界时变热流场及内部温度场同时在线重建方法。本文围绕参与性介质边界时变热流场和内部温度场同时近实时甚至实时重建这一主题,分别引入适用于线性系统的标准卡尔曼滤波技术、适用于弱非线性系统的扩展卡尔曼滤波技术以及适用于强非线性系统的无迹卡尔曼滤波技术对上述问题展开研究。主要工作可以概括为以下几个方面:
基于实时重建卡尔曼滤波理论,对标准卡尔曼滤波技术、扩展卡尔曼滤波技术和无迹卡尔曼滤波技术等在线重建算法进行了详细理论推导,同时概述了广泛用于导热反问题的标准卡尔曼滤波耦合递归最小二乘方法,分别采用标准卡尔曼滤波技术及其耦合算法对纯导热问题中的边界瞬态热流场和内部温度场进行了实时重建,并基于实验测量的温度信息,对所提出算法的有效性和可靠性进行了验证。
针对光热物性参数不随温度变化的参与性介质内的辐射导热耦合换热问题,基于参与性介质的边界温度信息,分别采用标准卡尔曼滤波技术和标准卡尔曼滤波耦合递归最小二乘法对均匀折射率介质表面边界时变热流和内部温度分布进行了实时重建。结果表明,标准卡尔曼滤波方法的稳定性及适用范围远超耦合算法。在此基础上,基于标准卡尔曼滤波技术构建了梯度折射率介质边界时变热流和内部温度分布实时重建模型。
针对参与性介质光热物性参数与温度相关的问题,分别基于标准卡尔曼滤波技术和扩展卡尔曼滤波技术构建了二维非线性辐射导热耦合换热中边界时变热流场及内部温度场的同时重建模型,结果表明标准卡尔曼滤波不能对上述参数进行精确重构。此外,基于扩展卡尔曼滤波技术和无迹卡尔曼滤波技术实现了非线性辐射相变耦合换热中边界瞬态热流、内部温度场及相界面的同时实时重建,结果表明扩展卡尔曼滤波技术仅能有效求解弱非线性问题。在此基础上,基于无迹卡尔曼滤波技术对参与性介质光热物性参数、温度场和边界热流进行了重建研究,发现若对上述参数进行同时实时重建至少需要两个位置的测量信息。
为提高重建结果的精度和稳定性,引入利用未来一小段时间内测量信息的平滑技术,基于未来一小段时间内的温度信息,采用无迹卡尔曼滤波技术耦合固定区间平滑技术对非线性辐射导热耦合换热中的边界时变热流和内部温度分布进行了近实时重建,重建结果表明引入固定区间平滑技术之后,重建边界热流的时滞性和稳定性及重建温度分布的精度均得到显著改善。通过分析未来温度信息对重建结果的影响,发现仅距预测点未来一小段时间内的温度信息有利于提高重建精度和稳定性。
基于实时重建卡尔曼滤波理论,对标准卡尔曼滤波技术、扩展卡尔曼滤波技术和无迹卡尔曼滤波技术等在线重建算法进行了详细理论推导,同时概述了广泛用于导热反问题的标准卡尔曼滤波耦合递归最小二乘方法,分别采用标准卡尔曼滤波技术及其耦合算法对纯导热问题中的边界瞬态热流场和内部温度场进行了实时重建,并基于实验测量的温度信息,对所提出算法的有效性和可靠性进行了验证。
针对光热物性参数不随温度变化的参与性介质内的辐射导热耦合换热问题,基于参与性介质的边界温度信息,分别采用标准卡尔曼滤波技术和标准卡尔曼滤波耦合递归最小二乘法对均匀折射率介质表面边界时变热流和内部温度分布进行了实时重建。结果表明,标准卡尔曼滤波方法的稳定性及适用范围远超耦合算法。在此基础上,基于标准卡尔曼滤波技术构建了梯度折射率介质边界时变热流和内部温度分布实时重建模型。
针对参与性介质光热物性参数与温度相关的问题,分别基于标准卡尔曼滤波技术和扩展卡尔曼滤波技术构建了二维非线性辐射导热耦合换热中边界时变热流场及内部温度场的同时重建模型,结果表明标准卡尔曼滤波不能对上述参数进行精确重构。此外,基于扩展卡尔曼滤波技术和无迹卡尔曼滤波技术实现了非线性辐射相变耦合换热中边界瞬态热流、内部温度场及相界面的同时实时重建,结果表明扩展卡尔曼滤波技术仅能有效求解弱非线性问题。在此基础上,基于无迹卡尔曼滤波技术对参与性介质光热物性参数、温度场和边界热流进行了重建研究,发现若对上述参数进行同时实时重建至少需要两个位置的测量信息。
为提高重建结果的精度和稳定性,引入利用未来一小段时间内测量信息的平滑技术,基于未来一小段时间内的温度信息,采用无迹卡尔曼滤波技术耦合固定区间平滑技术对非线性辐射导热耦合换热中的边界时变热流和内部温度分布进行了近实时重建,重建结果表明引入固定区间平滑技术之后,重建边界热流的时滞性和稳定性及重建温度分布的精度均得到显著改善。通过分析未来温度信息对重建结果的影响,发现仅距预测点未来一小段时间内的温度信息有利于提高重建精度和稳定性。