自组织数据挖掘的应用性研究

来源 :中国人民大学 | 被引量 : 0次 | 上传用户:whywhy_why
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
证券市场复杂性研究是复杂性科学研究的非常活跃的领域。随着经济体制和金融体制改革的深入,作为市场经济重要特征的证券市场已经成为我国社会生活的一个重要组成部分。而且证券市场其特有的复杂性也越来越被人们所认知。  首先,证券市场包含了成千上百的变量和参数。它们彼此之间互相联系,互相作用,整体来讲构成的是一幅十分复杂的非线性图像。在这么一个超高维的复杂系统中,要想对这么多的变量和参数做出准确地分析和计算,是不现实的,并且相应的计算结果也很难保证精确度和有效性,还有就是对于结果的检验也是一大问题。所以,通常来讲一个好的模型应该是可以将证券市场的实际状况反映到一个适当的字空间中去。同时,这个子空间不仅要有较低的维度,也要能够反映出证券市场的本质特性。在其他很多领域中,许多非线性模型已经为各种具体的复杂对象找到了其相应的规律作为参考。但是在经济系统中,特别是证券市场中,其本身的动态抽象研究还处于刚刚起步阶段。  证券系统的复杂性还体现在它本身的自组织结构上面。不同的行业板块,不同的地域和国家都会受到不同规律的影响和支配。例如,美国证券市场和欧洲证券市场以及中国证券市场所表现出来的特征差异非常大。即使在同一地区或国家,不同行业背景的股票,其波动性,受其他因素的影响性也都不能一概而论。  股票市场具有高收益与高风险并存的特性,若处理得当,股市上的一买一卖可以使穷人转瞬变为巨富,反之则可能让人一贫如洗。但是,股票市场是一种影响因素众多、各种不确定性共同作用的复杂巨系统,其价格波动往往表现出较强的非线性特征。因此,现存的一些方法的预测效果都在不同程度上难如人意。进行股市预测,首先必须承认股市存在着某种可重复性,即规律。而且这些规律完全隐藏在股市的历史数据中。进行股市预测的目的就是运用一些可行的方法从已有的数据中找出这些规律,并利用这些规律对股市的发展趋势进行判研,从而有助于指导投资决策。而通常能够从股市上得到的历史数据主要有开盘价、最高价、最低价、收盘价、成交金额和成交量等,它们之间呈现出的函数关系往往是非线性的,很难用一般的算法进行逼近。由于自组织算法对于复杂系统的建模和预测是一种比较有效的方法,本文运用自组织算法对我国发展相对成熟的股市——沪市进行应用性的研究。本文重点关注的是自组织数据挖掘与传统回归方法以及神经网络在对复杂系统数据进行分析时的区别与联系。另外就是自组织数据挖掘在处理证券市场数据时的常用手段以及相应结果的比较。  本文着重通过前期的理论、算法介绍,以及大量的实例,来对自组织数据挖掘与传统统计建模、数据挖掘中的神经网络等方法进行多方面的比较。  从分析结果来看,自组织组合预测也是很具有现实意义的。实例证明,自组织组合算法是有效的建模预测方法。相信加强对该算法的进一步研究,必将在以后的应用中取得更好的效果。可以相信,传统的基本分析和技术分析与非线性科学、现代高新技术相结合将是证券投资分析方法发展的必然趋势。
其他文献
信息安全的一个重要工具是密码技术,而密钥则是密码技术的根基,本文主要讨论了内网中的对称密钥分发问题。文中引入了一种全新的密钥分发协议KDP(KeyDistributionProtocol),分析
在线学习能够有效处理实时数据流和大规模数据,是机器学习领域的一个研究热点。在线学习一般指模型或分类器根据实时获取的新样本和反馈信息不断地进行更新学习,从而使得模型的
本文对软件agent在供应链管理中的应用进行了研究。主要内容包括: 1.设计和实现了一个多agent系统ABEAI用于企业应用集成,具有较好的扩展性和适应性,有效的对企业遗留系统进
本文简要回顾了变论域自适应模糊控制器的基本思想和构造过程。在介绍倒车问题的背景后,根据实际情况设计了倒车问题的变论域自适应模糊控制器。紧接着在Matlab平台下进行了系
粗糙集理论是上世纪80年代初由波兰数学家Z.Pawlak首先提出的关于数据分析的数学理论.自上世纪90年代起,该理论日益受到到重视,并成为国际学术界的研究热点之一.  本文分别从
离散型变量是随机变量中的一种重要的类型,在各个学科领域中存在大量的离散数据,因此离散数据中影响点和异常值的识别是一项重要的研究工作。影响分析作为研究数据集中影响点的
本文致力于研究两类非线性偏微分方程含小参数时解的存在性、多解性和集中性的分析刻画。具体地,关于非线性Kirchhoff型方程我们考虑了位势中含有局部极大或者鞍点时解的存在
Talagrand于1996年首先在欧氏空间上对Gauss测度建立了运费不等式.从那以后,在这个方向有了许多工作.本文的主要目的是考虑在一些无穷维空间上建立运费不等式.在取值于非紧李
带有平衡约束的数学规划问题(MPEC)是含有参数变分不等式约束的数学规划问题。由于它的广泛应用和它与运筹学的其他分支的紧密联系,这个非凸的,非光滑的难于解决的问题吸引了越
本文研究了在线Dial-a-Ride问题,考虑了目标函数是最大完工时间的多服务器问题和目标函数是总流水时间的单服务器问题。得到了一些结果。 在第二章中,研究了在线多服务器问